Identification of Molecular Transport Mechanisms in Micro-Porous Hydrotalcite–Silica Membrane

Hydrotalcite (HT) materials have been known to be able to adsorb CO 2 even at high temperature. However, HT has not been made into a micro-porous membrane because of its meso-porous nature. In order to form a micro-porous HT membrane, silica was selected as a host matrix due to its ability to retain...

Full description

Saved in:
Bibliographic Details
Published inTransport in porous media Vol. 104; no. 1; pp. 133 - 144
Main Authors Wiheeb, A. D., Ahmad, M. A., Murat, M. N., Kim, J., Othman, M. R.
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.08.2014
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Hydrotalcite (HT) materials have been known to be able to adsorb CO 2 even at high temperature. However, HT has not been made into a micro-porous membrane because of its meso-porous nature. In order to form a micro-porous HT membrane, silica was selected as a host matrix due to its ability to retain its micro-porosity. In this paper, a micro-porous hydrotalcite–silica membrane was formed on a meso-porous γ -alumina layer supported by a macro-porous α -alumina substrate. Most of the micro-porosity determined from nitrogen adsorption measurement was found to be either closed or open but not interconnected, whereas most of the meso-porosity (at ca. 11.2 nm) in the micro-porous membrane was open and interconnected, thereby promoting gas flow. Viscous flow mechanism was observed to dominate transport of gases in macro-porous membrane. Knudsen diffusion dominated transport of gases in meso-porous membrane. On the other hand, surface affinity influenced the transport of carbon dioxide through the micro-porous membrane rather significantly. While permeability of pure hydrogen and carbon dioxide were independent of pressure, the permeability of the gases in the binary mixtures decreased with increasing pressure. Both experiment and simulation demonstrated consistent results.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0169-3913
1573-1634
DOI:10.1007/s11242-014-0324-5