Nano-Biotechnology in Agriculture: Use of Nanomaterials to Promote Plant Growth and Stress Tolerance

Sustainable agriculture is a key component of the effort to meet the increased food demand of a rapidly increasing global population. Nano-biotechnology is a promising tool for sustainable agriculture. However, rather than acting as nanocarriers, some nanoparticles (NPs) with unique physiochemical p...

Full description

Saved in:
Bibliographic Details
Published inJournal of agricultural and food chemistry Vol. 68; no. 7; pp. 1935 - 1947
Main Authors Zhao, Lijuan, Lu, Li, Wang, Aodi, Zhang, Huiling, Huang, Min, Wu, Honghong, Xing, Baoshan, Wang, Zhenyu, Ji, Rong
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 19.02.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Sustainable agriculture is a key component of the effort to meet the increased food demand of a rapidly increasing global population. Nano-biotechnology is a promising tool for sustainable agriculture. However, rather than acting as nanocarriers, some nanoparticles (NPs) with unique physiochemical properties inherently enhance plant growth and stress tolerance. This biological role of nanoparticles depends on their physiochemical properties, application method (foliar delivery, hydroponics, soil), and the applied concentration. Here we review the effects of the different types, properties, and concentrations of nanoparticles on plant growth and on various abiotic (salinity, drought, heat, high light, and heavy metals) and biotic (pathogens and herbivores) stresses. The ability of nanoparticles to stimulate plant growth by positive effects on seed germination, root or shoot growth, and biomass or grain yield is also considered. The information presented herein will allow researchers within and outside the nano-biotechnology field to better select the appropriate nanoparticles as starting materials in agricultural applications. Ultimately, a shift from testing/utilizing existing nanoparticles to designing specific nanoparticles based on agriculture needs will facilitate the use of nanotechnology in sustainable agriculture.
AbstractList Sustainable agriculture is a key component of the effort to meet the increased food demand of a rapidly increasing global population. Nano-biotechnology is a promising tool for sustainable agriculture. However, rather than acting as nanocarriers, some nanoparticles (NPs) with unique physiochemical properties inherently enhance plant growth and stress tolerance. This biological role of nanoparticles depends on their physiochemical properties, application method (foliar delivery, hydroponics, soil), and the applied concentration. Here we review the effects of the different types, properties, and concentrations of nanoparticles on plant growth and on various abiotic (salinity, drought, heat, high light, and heavy metals) and biotic (pathogens and herbivores) stresses. The ability of nanoparticles to stimulate plant growth by positive effects on seed germination, root or shoot growth, and biomass or grain yield is also considered. The information presented herein will allow researchers within and outside the nano-biotechnology field to better select the appropriate nanoparticles as starting materials in agricultural applications. Ultimately, a shift from testing/utilizing existing nanoparticles to designing specific nanoparticles based on agriculture needs will facilitate the use of nanotechnology in sustainable agriculture.
Sustainable agriculture is a key component of the effort to meet the increased food demand of a rapidly increasing global population. Nano-biotechnology is a promising tool for sustainable agriculture. However, rather than acting as nanocarriers, some nanoparticles (NPs) with unique physiochemical properties inherently enhance plant growth and stress tolerance. This biological role of nanoparticles depends on their physiochemical properties, application method (foliar delivery, hydroponics, soil), and the applied concentration. Here we review the effects of the different types, properties, and concentrations of nanoparticles on plant growth and on various abiotic (salinity, drought, heat, high light, and heavy metals) and biotic (pathogens and herbivores) stresses. The ability of nanoparticles to stimulate plant growth by positive effects on seed germination, root or shoot growth, and biomass or grain yield is also considered. The information presented herein will allow researchers within and outside the nano-biotechnology field to better select the appropriate nanoparticles as starting materials in agricultural applications. Ultimately, a shift from testing/utilizing existing nanoparticles to designing specific nanoparticles based on agriculture needs will facilitate the use of nanotechnology in sustainable agriculture.Sustainable agriculture is a key component of the effort to meet the increased food demand of a rapidly increasing global population. Nano-biotechnology is a promising tool for sustainable agriculture. However, rather than acting as nanocarriers, some nanoparticles (NPs) with unique physiochemical properties inherently enhance plant growth and stress tolerance. This biological role of nanoparticles depends on their physiochemical properties, application method (foliar delivery, hydroponics, soil), and the applied concentration. Here we review the effects of the different types, properties, and concentrations of nanoparticles on plant growth and on various abiotic (salinity, drought, heat, high light, and heavy metals) and biotic (pathogens and herbivores) stresses. The ability of nanoparticles to stimulate plant growth by positive effects on seed germination, root or shoot growth, and biomass or grain yield is also considered. The information presented herein will allow researchers within and outside the nano-biotechnology field to better select the appropriate nanoparticles as starting materials in agricultural applications. Ultimately, a shift from testing/utilizing existing nanoparticles to designing specific nanoparticles based on agriculture needs will facilitate the use of nanotechnology in sustainable agriculture.
Author Xing, Baoshan
Zhao, Lijuan
Wang, Aodi
Wang, Zhenyu
Zhang, Huiling
Huang, Min
Ji, Rong
Wu, Honghong
Lu, Li
AuthorAffiliation Huazhong Agricultural University
State Key Laboratory of Pollution Control and Resource Reuse, School of Environment
Stockbridge School of Agriculture
China Agricultural University
Institute of Environmental Processes and Pollution Control, and School of Environmental and Civil Engineering
College of Plant Science and Technology
College of Agronomy and Biotechnology
AuthorAffiliation_xml – name: State Key Laboratory of Pollution Control and Resource Reuse, School of Environment
– name: College of Agronomy and Biotechnology
– name: China Agricultural University
– name: Huazhong Agricultural University
– name: Institute of Environmental Processes and Pollution Control, and School of Environmental and Civil Engineering
– name: Stockbridge School of Agriculture
– name: College of Plant Science and Technology
Author_xml – sequence: 1
  givenname: Lijuan
  orcidid: 0000-0002-8481-0435
  surname: Zhao
  fullname: Zhao, Lijuan
  email: ljzhao@nju.edu.cn
  organization: State Key Laboratory of Pollution Control and Resource Reuse, School of Environment
– sequence: 2
  givenname: Li
  surname: Lu
  fullname: Lu, Li
  organization: State Key Laboratory of Pollution Control and Resource Reuse, School of Environment
– sequence: 3
  givenname: Aodi
  surname: Wang
  fullname: Wang, Aodi
  organization: State Key Laboratory of Pollution Control and Resource Reuse, School of Environment
– sequence: 4
  givenname: Huiling
  surname: Zhang
  fullname: Zhang, Huiling
  organization: State Key Laboratory of Pollution Control and Resource Reuse, School of Environment
– sequence: 5
  givenname: Min
  surname: Huang
  fullname: Huang, Min
  organization: State Key Laboratory of Pollution Control and Resource Reuse, School of Environment
– sequence: 6
  givenname: Honghong
  surname: Wu
  fullname: Wu, Honghong
  email: honghong.wu@mail.hzau.edu.cn
  organization: China Agricultural University
– sequence: 7
  givenname: Baoshan
  orcidid: 0000-0003-2028-1295
  surname: Xing
  fullname: Xing, Baoshan
  organization: Stockbridge School of Agriculture
– sequence: 8
  givenname: Zhenyu
  orcidid: 0000-0002-5114-435X
  surname: Wang
  fullname: Wang, Zhenyu
  organization: Institute of Environmental Processes and Pollution Control, and School of Environmental and Civil Engineering
– sequence: 9
  givenname: Rong
  orcidid: 0000-0002-1724-5253
  surname: Ji
  fullname: Ji, Rong
  organization: State Key Laboratory of Pollution Control and Resource Reuse, School of Environment
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32003987$$D View this record in MEDLINE/PubMed
BookMark eNqFkcFPFTEQhxsDkQd692R69OA-p9t2t-sNiKAJARLgvGm7s1Cy22LbjeG_t4_39GCinuYw3zeZ_H6HZM8Hj4S8Y7BmULNP2qb1ox7tujPQNEy-Iisma6gkY2qPrKAwlZINOyCHKT0CgJItvCYHvAbgnWpXZLjUPlQnLmS0Dz5M4f6ZOk-P76Ozy5SXiJ_pXUIaRrohZ50xOj0lmgO9jmEuHr2etM_0PIYf-YFqP9CbHDElehsmjNpbfEP2x-Lg2908IndnX25Pv1YXV-ffTo8vKi24zFXXmbFTjQLB204qbRgOskaBFlAraJCjMkaIkVvVcKMkE6a2nA9jbUarNT8iH7Z3n2L4vmDK_eySxan8h2FJfS0AhKylUP9HuQTo2laIgr7foYuZceifopt1fO5_hVgA2AI2hpQijr8RBv2mp7701G966nc9FaX5Q7Eu6-yCz1G76V_ix634sglL9CXQv-M_AW4ZqIk
CitedBy_id crossref_primary_10_1186_s12951_021_01176_w
crossref_primary_10_1002_advs_202103414
crossref_primary_10_1021_acsanm_2c05384
crossref_primary_10_1007_s00709_025_02038_0
crossref_primary_10_1007_s42729_021_00647_1
crossref_primary_10_1016_j_scitotenv_2021_146883
crossref_primary_10_1039_D0EN01129K
crossref_primary_10_1016_j_scitotenv_2023_168318
crossref_primary_10_1039_D3EN00014A
crossref_primary_10_1039_D2EN00783E
crossref_primary_10_3390_nano12081292
crossref_primary_10_1021_acsomega_1c03215
crossref_primary_10_1039_D1EN00740H
crossref_primary_10_3390_ijms25084514
crossref_primary_10_1016_j_ecoenv_2021_113008
crossref_primary_10_1111_ppl_13952
crossref_primary_10_1007_s13204_021_01804_9
crossref_primary_10_3390_microorganisms10081528
crossref_primary_10_1007_s00344_023_11001_3
crossref_primary_10_1016_j_pestbp_2023_105754
crossref_primary_10_1016_j_chemosphere_2021_133004
crossref_primary_10_1111_jipb_13652
crossref_primary_10_1016_j_plaphy_2024_108598
crossref_primary_10_1007_s12274_023_6284_8
crossref_primary_10_1016_j_chemosphere_2024_143212
crossref_primary_10_1016_j_impact_2020_100271
crossref_primary_10_1039_D3NR02322B
crossref_primary_10_1002_smll_202402899
crossref_primary_10_1039_D2EN00837H
crossref_primary_10_2174_1573413719666230418110534
crossref_primary_10_3389_fmicb_2024_1516794
crossref_primary_10_1021_acs_est_4c07881
crossref_primary_10_1021_acs_jafc_3c04013
crossref_primary_10_1016_j_scitotenv_2020_144726
crossref_primary_10_1007_s11356_023_27744_1
crossref_primary_10_1039_D2EN00651K
crossref_primary_10_1016_j_jhazmat_2023_132770
crossref_primary_10_1016_j_plana_2022_100005
crossref_primary_10_1155_2024_9914079
crossref_primary_10_53365_nrfhh_144175
crossref_primary_10_3390_nano12030483
crossref_primary_10_1007_s11356_023_26862_0
crossref_primary_10_1111_jipb_13887
crossref_primary_10_1021_acs_jafc_1c03673
crossref_primary_10_1021_acsnano_1c02917
crossref_primary_10_3390_su142214880
crossref_primary_10_1016_j_scitotenv_2024_172416
crossref_primary_10_1016_j_hazadv_2024_100579
crossref_primary_10_3389_fpls_2024_1418515
crossref_primary_10_3390_nano11020267
crossref_primary_10_1016_j_eurpolymj_2022_111432
crossref_primary_10_3390_su13063552
crossref_primary_10_1016_j_bcab_2024_103457
crossref_primary_10_1016_j_indcrop_2024_119691
crossref_primary_10_3390_biology11111564
crossref_primary_10_1016_j_scienta_2023_112189
crossref_primary_10_1016_j_micpath_2024_106639
crossref_primary_10_1088_1755_1315_1060_1_012043
crossref_primary_10_1016_j_stress_2023_100256
crossref_primary_10_1021_acsagscitech_2c00098
crossref_primary_10_1016_j_jclepro_2023_139823
crossref_primary_10_1093_jxb_erab547
crossref_primary_10_1016_j_envpol_2022_119320
crossref_primary_10_3389_fmicb_2023_1229294
crossref_primary_10_1016_j_ijfoodmicro_2022_110016
crossref_primary_10_1016_j_plaphy_2024_109111
crossref_primary_10_1016_j_scitotenv_2022_155965
crossref_primary_10_1007_s00284_022_02993_4
crossref_primary_10_3389_fgeed_2022_1029944
crossref_primary_10_1016_j_bcab_2023_102874
crossref_primary_10_1016_j_plaphy_2024_109110
crossref_primary_10_3390_agronomy13082134
crossref_primary_10_1016_j_isci_2024_109555
crossref_primary_10_1016_j_stress_2024_100540
crossref_primary_10_1021_acs_est_3c01783
crossref_primary_10_1039_D2EN00213B
crossref_primary_10_3390_su14094914
crossref_primary_10_1016_j_carbpol_2023_120893
crossref_primary_10_1016_j_pedsph_2024_08_003
crossref_primary_10_3389_fbioe_2024_1436352
crossref_primary_10_1016_j_scitotenv_2024_174381
crossref_primary_10_1039_D1EN00870F
crossref_primary_10_1016_j_actbio_2021_07_050
crossref_primary_10_3390_plants13101319
crossref_primary_10_1039_D0EN01281E
crossref_primary_10_1515_ntrev_2024_0126
crossref_primary_10_1016_j_jhazmat_2021_127374
crossref_primary_10_3390_agronomy12092069
crossref_primary_10_1007_s10653_021_01162_z
crossref_primary_10_1016_j_plaphy_2024_108704
crossref_primary_10_1007_s12298_024_01488_9
crossref_primary_10_1016_j_envres_2023_116849
crossref_primary_10_1016_j_xplc_2022_100346
crossref_primary_10_3390_agriculture12101672
crossref_primary_10_1016_j_envpol_2023_122273
crossref_primary_10_1186_s12951_021_00792_w
crossref_primary_10_1016_j_crope_2023_12_002
crossref_primary_10_1016_j_susmat_2023_e00809
crossref_primary_10_3390_nano12010173
crossref_primary_10_1016_j_envint_2023_107924
crossref_primary_10_1016_j_heliyon_2024_e25521
crossref_primary_10_1039_D2NJ02088B
crossref_primary_10_22201_ceiich_24485691e_2025_34_69823
crossref_primary_10_3389_fnut_2022_1013756
crossref_primary_10_3390_agronomy13041174
crossref_primary_10_1016_j_bios_2020_112636
crossref_primary_10_3390_agronomy13030729
crossref_primary_10_1016_j_plaphy_2022_12_004
crossref_primary_10_1111_1541_4337_13128
crossref_primary_10_1016_j_chemosphere_2023_138736
crossref_primary_10_1002_ps_7218
crossref_primary_10_1016_j_jenvman_2024_123487
crossref_primary_10_1049_nbt2_6152486
crossref_primary_10_1021_acsomega_3c04638
crossref_primary_10_32604_biocell_2023_025740
crossref_primary_10_3390_plants11202776
crossref_primary_10_1021_acsagscitech_2c00079
crossref_primary_10_1016_j_plaphy_2024_108796
crossref_primary_10_1016_j_scitotenv_2024_174505
crossref_primary_10_3390_joitmc8030148
crossref_primary_10_1016_j_envpol_2021_117246
crossref_primary_10_1016_j_bcab_2024_103366
crossref_primary_10_1016_j_cj_2024_06_014
crossref_primary_10_1093_oxfmat_itab002
crossref_primary_10_1039_D2NR01904C
crossref_primary_10_1271_kagakutoseibutsu_60_110
crossref_primary_10_1016_j_enmm_2024_100998
crossref_primary_10_3390_nano11113073
crossref_primary_10_1016_j_jafr_2025_101680
crossref_primary_10_1021_acs_nanolett_4c02568
crossref_primary_10_1093_ee_nvac042
crossref_primary_10_3390_nano12244469
crossref_primary_10_1016_j_jhazmat_2024_136357
crossref_primary_10_31857_S032097252309018X
crossref_primary_10_1134_S1607672920060113
crossref_primary_10_3389_fpls_2022_843575
crossref_primary_10_3390_biology13040219
crossref_primary_10_1039_D3RA01514A
crossref_primary_10_1016_j_jclepro_2024_141607
crossref_primary_10_1111_ppl_13364
crossref_primary_10_1016_j_chemosphere_2023_138166
crossref_primary_10_1016_j_nxsust_2024_100051
crossref_primary_10_1021_acs_est_3c10506
crossref_primary_10_3389_fpls_2022_1040037
crossref_primary_10_21285_2227_2925_2021_11_1_125_135
crossref_primary_10_1002_eom2_12451
crossref_primary_10_1021_acssuschemeng_1c00782
crossref_primary_10_1021_acsomega_3c06961
crossref_primary_10_1016_j_jorganchem_2024_123477
crossref_primary_10_1088_1742_6596_2003_1_012008
crossref_primary_10_1016_j_jclepro_2022_133729
crossref_primary_10_1021_acs_iecr_3c03802
crossref_primary_10_1007_s12633_024_03031_7
crossref_primary_10_1002_jsde_12821
crossref_primary_10_1186_s12951_022_01483_w
crossref_primary_10_1007_s42452_024_06009_7
crossref_primary_10_1016_j_plaphy_2020_10_011
crossref_primary_10_1007_s11356_023_27400_8
crossref_primary_10_1016_j_scienta_2023_111847
crossref_primary_10_1039_C9CS00829B
crossref_primary_10_1039_D4EN00753K
crossref_primary_10_1016_j_scitotenv_2022_159307
crossref_primary_10_1016_j_tplants_2023_11_024
crossref_primary_10_1016_j_jare_2020_12_011
crossref_primary_10_1002_ird_2739
crossref_primary_10_1021_acs_jafc_2c08065
crossref_primary_10_2139_ssrn_4199873
crossref_primary_10_7717_peerj_14038
crossref_primary_10_1016_j_stress_2023_100280
crossref_primary_10_1016_j_postharvbio_2025_113397
crossref_primary_10_3390_molecules26134090
crossref_primary_10_1007_s10725_021_00782_w
crossref_primary_10_1016_j_plana_2024_100072
crossref_primary_10_15407_frg2021_05_444
crossref_primary_10_1016_j_plana_2024_100078
crossref_primary_10_1108_SCM_01_2023_0045
crossref_primary_10_1002_smll_202104482
crossref_primary_10_1016_j_chemosphere_2024_144001
crossref_primary_10_1016_j_stress_2023_100284
crossref_primary_10_1007_s12223_024_01147_2
crossref_primary_10_1155_2022_5120307
crossref_primary_10_1007_s00344_023_10972_7
crossref_primary_10_3389_fpls_2022_946717
crossref_primary_10_1016_j_jclepro_2023_138489
crossref_primary_10_3390_plants12030491
crossref_primary_10_3389_fenvs_2022_836002
crossref_primary_10_1016_j_tibtech_2022_09_013
crossref_primary_10_1134_S0003683822020132
crossref_primary_10_1134_S0003683822050106
crossref_primary_10_1186_s12870_024_04798_y
crossref_primary_10_1016_j_plana_2025_100143
crossref_primary_10_3934_agrfood_2021037
crossref_primary_10_1016_j_impact_2022_100449
crossref_primary_10_3390_agronomy13030768
crossref_primary_10_3390_toxics10040172
crossref_primary_10_1021_acs_jafc_4c00154
crossref_primary_10_1080_19315260_2022_2142876
crossref_primary_10_1021_acs_jafc_4c04075
crossref_primary_10_2174_1573413717666211118111333
crossref_primary_10_3390_ijms25168600
crossref_primary_10_1016_j_sajb_2023_08_029
crossref_primary_10_1021_acsami_3c00043
crossref_primary_10_1007_s11104_025_07361_2
crossref_primary_10_1186_s12951_022_01509_3
crossref_primary_10_3390_microorganisms10091837
crossref_primary_10_1039_D1EN00845E
crossref_primary_10_7717_peerj_17807
crossref_primary_10_1007_s44154_022_00065_y
crossref_primary_10_1016_j_crope_2023_03_002
crossref_primary_10_1016_j_chemosphere_2021_132672
crossref_primary_10_1016_j_jes_2023_08_027
crossref_primary_10_1038_s41565_022_01082_8
crossref_primary_10_3389_fnano_2020_579954
crossref_primary_10_1016_j_apsadv_2023_100378
crossref_primary_10_1039_D1EN01079D
crossref_primary_10_1016_j_plana_2024_100090
crossref_primary_10_1021_acsagscitech_4c00576
crossref_primary_10_1021_acs_est_3c01843
crossref_primary_10_1016_j_envpol_2022_119755
crossref_primary_10_1021_acsagscitech_3c00118
crossref_primary_10_1134_S0003683821060053
crossref_primary_10_3390_molecules26216710
crossref_primary_10_3390_nano11010026
crossref_primary_10_1016_j_chemosphere_2024_141789
crossref_primary_10_1016_j_cj_2024_05_017
crossref_primary_10_1021_acsnano_3c06172
crossref_primary_10_1007_s11105_022_01337_7
crossref_primary_10_1002_gch2_202200025
crossref_primary_10_1038_s41467_024_51741_8
crossref_primary_10_1021_acsagscitech_3c00351
crossref_primary_10_3390_agronomy14122822
crossref_primary_10_1007_s12298_021_00979_3
crossref_primary_10_1186_s12951_021_01178_8
crossref_primary_10_1016_j_cj_2024_09_010
crossref_primary_10_1016_j_envint_2021_106891
crossref_primary_10_1134_S2635167624602031
crossref_primary_10_3390_nano12234219
crossref_primary_10_1016_j_enmm_2022_100687
crossref_primary_10_1002_btpr_3027
crossref_primary_10_3390_horticulturae7100332
crossref_primary_10_1016_j_cj_2021_06_002
crossref_primary_10_1016_j_scitotenv_2021_147907
crossref_primary_10_3390_agronomy13123060
crossref_primary_10_1021_acs_est_0c03767
crossref_primary_10_1590_s0102_0536_2024_e2617
crossref_primary_10_1002_jobm_202400305
crossref_primary_10_1039_D4EN00963K
crossref_primary_10_1016_j_apsusc_2021_150745
crossref_primary_10_1016_j_cis_2024_103377
crossref_primary_10_1016_j_jhazmat_2022_130309
crossref_primary_10_1016_j_indcrop_2024_120297
crossref_primary_10_1016_j_microb_2024_100147
crossref_primary_10_1016_j_scitotenv_2024_169996
crossref_primary_10_1093_plphys_kiac430
crossref_primary_10_1016_j_plaphy_2021_04_019
crossref_primary_10_1007_s12649_024_02602_4
crossref_primary_10_1016_j_bcab_2024_103066
crossref_primary_10_3389_fpls_2024_1393458
crossref_primary_10_24818_EA_2022_60_525
crossref_primary_10_1021_acsagscitech_2c00028
crossref_primary_10_1021_acsagscitech_1c00039
crossref_primary_10_1039_D0EN01241F
crossref_primary_10_1111_1744_7917_13033
crossref_primary_10_1051_e3sconf_202561904005
crossref_primary_10_3390_physchem3010010
crossref_primary_10_1021_acsfoodscitech_2c00035
crossref_primary_10_1016_j_scitotenv_2024_171948
crossref_primary_10_1016_j_jhazmat_2023_130857
crossref_primary_10_3389_fpls_2022_865048
crossref_primary_10_1016_j_pestbp_2023_105682
crossref_primary_10_1002_adfm_202411869
crossref_primary_10_1021_acs_jafc_2c00727
crossref_primary_10_1016_j_cropro_2023_106398
crossref_primary_10_1016_j_ijfoodmicro_2023_110551
crossref_primary_10_1016_j_biotechadv_2022_107914
crossref_primary_10_1080_10643389_2024_2448048
crossref_primary_10_1021_acs_langmuir_4c01842
crossref_primary_10_1021_acsagscitech_1c00273
crossref_primary_10_1007_s11356_023_26261_5
crossref_primary_10_1021_acsagscitech_1c00030
crossref_primary_10_1021_acs_est_3c01878
crossref_primary_10_3390_plants13121699
crossref_primary_10_1007_s00344_023_11049_1
crossref_primary_10_1016_j_plaphy_2023_107908
crossref_primary_10_1016_j_scitotenv_2022_160476
crossref_primary_10_1021_acsagscitech_1c00146
crossref_primary_10_1016_j_bcab_2021_102258
crossref_primary_10_1080_26395940_2021_2025150
crossref_primary_10_3390_molecules29235520
crossref_primary_10_1016_j_envpol_2022_119661
crossref_primary_10_1186_s11671_021_03612_0
crossref_primary_10_1002_slct_202203499
crossref_primary_10_1039_D1EN00837D
crossref_primary_10_1016_j_ecoenv_2024_115992
crossref_primary_10_1002_jsfa_12811
crossref_primary_10_1016_j_jece_2024_113574
crossref_primary_10_3389_fsufs_2022_932424
crossref_primary_10_1007_s11104_021_04908_x
crossref_primary_10_1016_j_indcrop_2024_119001
crossref_primary_10_1021_acs_jafc_0c04579
crossref_primary_10_32615_ps_2021_049
crossref_primary_10_1016_j_ecoenv_2023_115576
crossref_primary_10_3390_catal11080902
crossref_primary_10_3390_nano11102572
crossref_primary_10_1007_s44169_023_00053_x
crossref_primary_10_1016_j_enmm_2021_100457
crossref_primary_10_1016_j_scitotenv_2021_146578
crossref_primary_10_1093_treephys_tpac126
crossref_primary_10_1021_acsagscitech_4c00411
crossref_primary_10_1007_s10853_022_07259_9
crossref_primary_10_1016_j_oneear_2023_05_008
crossref_primary_10_1007_s40726_024_00331_9
crossref_primary_10_1186_s11671_023_03845_1
crossref_primary_10_1007_s11368_023_03695_5
crossref_primary_10_1021_acsomega_4c11661
crossref_primary_10_1016_j_eti_2025_104101
crossref_primary_10_1016_j_envpol_2022_118900
crossref_primary_10_1134_S0006297923090183
crossref_primary_10_1007_s11356_022_21799_2
crossref_primary_10_1021_acsnano_2c03591
crossref_primary_10_3390_molecules27227826
crossref_primary_10_1021_acsagscitech_1c00018
crossref_primary_10_3390_su13041781
crossref_primary_10_1080_23311932_2024_2366396
crossref_primary_10_3762_bjnano_11_93
crossref_primary_10_1039_D4EN00053F
crossref_primary_10_1093_pcp_pcaa119
crossref_primary_10_1016_j_pestbp_2024_106252
crossref_primary_10_1007_s00344_022_10579_4
crossref_primary_10_3390_ma15030870
crossref_primary_10_1016_j_scitotenv_2024_171862
crossref_primary_10_1016_j_jenvman_2023_119553
crossref_primary_10_1016_j_plaphy_2022_11_023
crossref_primary_10_1016_j_agwat_2023_108392
crossref_primary_10_1016_j_scitotenv_2022_155258
crossref_primary_10_1021_acsnano_4c01835
crossref_primary_10_1039_D3EN00363A
crossref_primary_10_1007_s10876_023_02483_y
crossref_primary_10_1016_j_envpol_2023_122578
crossref_primary_10_1149_1945_7111_ad0b75
crossref_primary_10_1039_D2EN00688J
crossref_primary_10_1016_j_plana_2024_100121
crossref_primary_10_1016_j_ccr_2024_216299
crossref_primary_10_1016_j_chemosphere_2022_134114
crossref_primary_10_1088_2053_1591_abf7f7
crossref_primary_10_1039_D2EN00187J
crossref_primary_10_1134_S1021443724605470
crossref_primary_10_1186_s12951_021_00892_7
crossref_primary_10_29105_qh10_4_266
crossref_primary_10_1016_j_plana_2023_100039
crossref_primary_10_1016_j_tig_2024_01_005
crossref_primary_10_1186_s12870_023_04305_9
crossref_primary_10_1371_journal_pone_0310424
crossref_primary_10_1016_j_indcrop_2023_116266
crossref_primary_10_1016_j_jhazmat_2022_129640
crossref_primary_10_3390_plants10061144
crossref_primary_10_3390_plants11030316
crossref_primary_10_1016_j_jhazmat_2022_130647
crossref_primary_10_1016_j_chemosphere_2022_134474
crossref_primary_10_1016_j_jhazmat_2020_124167
crossref_primary_10_1007_s13562_024_00925_w
crossref_primary_10_1016_j_scienta_2023_112097
crossref_primary_10_32604_phyton_2025_061462
crossref_primary_10_1021_acs_langmuir_3c01515
crossref_primary_10_1134_S2635167623700337
crossref_primary_10_1016_j_scitotenv_2021_144967
crossref_primary_10_1007_s12298_022_01163_x
crossref_primary_10_1016_j_indcrop_2022_115427
crossref_primary_10_3389_fpls_2022_843994
crossref_primary_10_1007_s11033_023_08914_3
crossref_primary_10_1016_j_carbon_2022_12_065
crossref_primary_10_1016_j_bcab_2023_102948
crossref_primary_10_1016_j_ecoenv_2024_117033
crossref_primary_10_1016_j_indcrop_2024_119269
crossref_primary_10_3390_nano11123161
crossref_primary_10_3390_fib12080064
Cites_doi 10.1021/es402249b
10.1016/j.carbon.2013.11.072
10.1007/s12011-010-8901-0
10.1016/j.sjbs.2016.04.012
10.1016/j.tplants.2014.09.001
10.1021/jf5052442
10.3389/fpls.2019.01280
10.1039/C4EN00138A
10.1039/C6EN00146G
10.1080/00380768.2004.10408447
10.1038/s41565-018-0223-y
10.1039/C7SC05476A
10.1371/journal.pone.0167245
10.1021/acs.jafc.7b02178
10.1093/jxb/ers100
10.1094/PHYTO-08-12-0183-R
10.1021/acs.jafc.6b02239
10.1039/C9EN00265K
10.1039/C8RA04680H
10.1021/acs.jafc.8b01600
10.3389/fmicb.2018.00790
10.1080/00103624.2013.863911
10.1021/acs.jafc.7b01957
10.1021/acs.est.9b00593
10.1021/jf502716c
10.1016/j.jcis.2017.11.064
10.1039/C9EN00137A
10.3390/agronomy9050246
10.1038/s41565-019-0375-4
10.1016/j.chemosphere.2018.09.120
10.1016/j.cj.2018.06.001
10.1016/j.scienta.2018.10.007
10.1039/C3NR06079A
10.1021/ja1084942
10.1021/es504375t
10.1021/acs.nanolett.5b04467
10.1007/s10495-014-0972-5
10.1021/acssuschemeng.9b04800
10.1006/anbo.1996.0155
10.1038/nnano.2007.260
10.1021/acs.jafc.8b01727
10.1038/s41565-019-0439-5
10.1111/j.1747-0765.2007.00129.x
10.1021/acs.jafc.7b05940
10.1111/ppa.12443
10.1071/EN19046
10.1186/s11671-017-2404-2
10.4081/nd.2013.e1
10.1038/s41477-017-0063-z
10.1021/nn200262u
10.1166/jbns.2015.1296
10.1016/j.chemosphere.2016.02.096
10.1038/s41565-018-0131-1
10.1105/tpc.010352
10.3390/molecules23123375
10.1038/nmat3890
10.1002/aenm.201201014
10.1021/acsnano.5b04979
10.1021/acsnano.6b07781
10.1021/acsomega.8b01894
10.1021/nn4034794
10.1038/s41598-017-08571-0
10.1007/s00425-003-1105-5
10.1186/s11671-017-1839-9
10.1038/nnano.2010.24
10.1146/annurev-phyto-080417-050108
10.1038/s41565-019-0382-5
10.1021/acsnano.8b09781
10.3389/fpls.2016.00815
10.1021/acs.jafc.5b05214
10.1039/C9EN01035A
10.1016/j.copbio.2017.07.003
10.4161/psb.22455
10.1016/j.envpol.2017.05.083
10.1038/s41565-019-0470-6
10.1038/nplants.2016.207
10.1016/j.envpol.2019.02.031
10.1016/j.matlet.2013.10.011
10.1007/s11270-015-2738-2
10.1038/s41565-019-0461-7
10.1016/j.envexpbot.2013.10.003
10.1016/j.envpol.2016.09.060
10.1007/s11738-013-1369-8
10.1098/rsfs.2018.0048
10.1021/nn4026806
10.1002/ldr.2780
10.1007/s13205-019-1626-7
10.1016/j.chemosphere.2016.05.083
10.1039/C6EN00573J
10.1039/C8EN00323H
10.1007/s10658-014-0399-4
10.1016/j.jcis.2015.06.015
10.1111/j.1365-3040.2009.02056.x
10.1007/s11051-016-3642-4
10.1371/journal.pone.0166248
10.1007/s13593-011-0039-8
10.1016/j.jhazmat.2009.05.084
10.1021/cm061580n
10.1016/j.scitotenv.2006.11.007
10.1111/nph.12797
10.1021/es402659t
10.1016/j.jplph.2004.09.009
10.1038/nnano.2007.108
10.1080/00380768.2015.1030690
10.1007/s11051-015-2907-7
10.1094/PHYTO-01-15-0006-R
10.1002/etc.2697
10.1371/journal.pone.0097881
10.1039/C4NR03848G
10.1021/acs.jafc.6b00838
10.3389/fchem.2019.00046
10.1016/j.envint.2013.11.015
10.1016/j.sjbs.2013.04.005
10.1021/acs.jafc.8b01345
10.1021/acs.est.8b02440
10.1021/acsnano.7b05723
10.1038/nature11420
10.1007/s11104-018-3770-y
10.1021/acs.jafc.7b02961
10.1021/acsami.8b01245
10.1016/j.chemosphere.2015.09.028
10.1021/jf302154y
10.1002/smll.201403276
10.1021/acssuschemeng.8b03379
10.1016/j.scitotenv.2019.06.392
10.1007/978-94-011-0878-2_7
ContentType Journal Article
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1021/acs.jafc.9b06615
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE
AGRICOLA
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1520-5118
EndPage 1947
ExternalDocumentID 32003987
10_1021_acs_jafc_9b06615
b457254671
Genre Journal Article
Review
GroupedDBID -
55A
5GY
7~N
85S
AABXI
ABFLS
ABMVS
ABUCX
ACGFS
ACJ
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
DU5
EBS
ED
ED~
F5P
GNL
GX1
IH9
JG
JG~
LG6
P2P
ROL
TWZ
UI2
VF5
VG9
W1F
WH7
X
---
-~X
.K2
4.4
5VS
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACGFO
ADHLV
AGXLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-a435t-99bf98680437958ab1ed52e4ec0ea806e3e8bb44f3c863b8514b2c33df2bfcaa3
IEDL.DBID ACS
ISSN 0021-8561
1520-5118
IngestDate Thu Jul 10 18:42:20 EDT 2025
Fri Jul 11 08:37:58 EDT 2025
Thu Jan 02 22:59:25 EST 2025
Tue Jul 01 03:33:40 EDT 2025
Thu Apr 24 23:08:33 EDT 2025
Thu Aug 27 22:10:51 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords stress
nanopesticide
nano-biotechnolgoy
plant
nanoparticle
nanofertilizer
sustainable agriculture
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a435t-99bf98680437958ab1ed52e4ec0ea806e3e8bb44f3c863b8514b2c33df2bfcaa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0002-1724-5253
0000-0002-5114-435X
0000-0002-8481-0435
0000-0003-2028-1295
PMID 32003987
PQID 2350097744
PQPubID 23479
PageCount 13
ParticipantIDs proquest_miscellaneous_2400452548
proquest_miscellaneous_2350097744
pubmed_primary_32003987
crossref_primary_10_1021_acs_jafc_9b06615
crossref_citationtrail_10_1021_acs_jafc_9b06615
acs_journals_10_1021_acs_jafc_9b06615
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-02-19
PublicationDateYYYYMMDD 2020-02-19
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-19
  day: 19
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of agricultural and food chemistry
PublicationTitleAlternate J. Agric. Food Chem
PublicationYear 2020
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref45/cit45
ref99/cit99
ref3/cit3
ref81/cit81
ref16/cit16
Brown P. H. (ref103/cit103) 1993
ref52/cit52
ref114/cit114
ref23/cit23
ref115/cit115
ref116/cit116
ref110/cit110
ref111/cit111
ref2/cit2
ref112/cit112
ref77/cit77
ref113/cit113
ref71/cit71
ref117/cit117
ref20/cit20
ref48/cit48
ref118/cit118
ref74/cit74
ref10/cit10
ref35/cit35
ref89/cit89
ref19/cit19
ref93/cit93
ref42/cit42
ref96/cit96
ref107/cit107
ref120/cit120
ref109/cit109
ref13/cit13
ref122/cit122
ref105/cit105
ref67/cit67
ref38/cit38
ref128/cit128
ref90/cit90
ref124/cit124
ref64/cit64
ref126/cit126
ref54/cit54
ref6/cit6
ref18/cit18
ref137/cit137
ref65/cit65
ref97/cit97
ref101/cit101
ref11/cit11
ref102/cit102
ref29/cit29
ref86/cit86
ref32/cit32
ref39/cit39
ref5/cit5
ref43/cit43
ref80/cit80
ref133/cit133
ref28/cit28
ref132/cit132
ref91/cit91
ref55/cit55
ref12/cit12
ref22/cit22
ref121/cit121
ref33/cit33
ref87/cit87
ref106/cit106
ref129/cit129
ref44/cit44
ref70/cit70
Cromwell W. A. (ref76/cit76) 2014; 46
ref98/cit98
ref125/cit125
ref9/cit9
ref27/cit27
ref63/cit63
ref56/cit56
ref92/cit92
ref8/cit8
ref31/cit31
ref59/cit59
ref85/cit85
ref34/cit34
ref37/cit37
Liu R. (ref136/cit136) 2016
ref60/cit60
ref88/cit88
ref17/cit17
ref82/cit82
ref53/cit53
ref21/cit21
ref46/cit46
ref49/cit49
Sathiyanarayanan A. (ref66/cit66) 2018; 1
ref75/cit75
ref24/cit24
ref50/cit50
ref78/cit78
ref36/cit36
ref83/cit83
ref79/cit79
ref100/cit100
ref25/cit25
ref72/cit72
ref14/cit14
ref57/cit57
ref51/cit51
ref134/cit134
ref135/cit135
ref40/cit40
ref68/cit68
ref94/cit94
ref130/cit130
ref131/cit131
ref26/cit26
ref73/cit73
ref69/cit69
ref15/cit15
ref62/cit62
Parzinger E. (ref119/cit119) 2015; 9
ref41/cit41
ref58/cit58
ref95/cit95
ref108/cit108
ref104/cit104
A. Shallan M. (ref61/cit61) 2016; 7
ref4/cit4
ref30/cit30
ref47/cit47
ref84/cit84
ref127/cit127
ref1/cit1
ref123/cit123
ref7/cit7
References_xml – ident: ref98/cit98
  doi: 10.1021/es402249b
– ident: ref86/cit86
  doi: 10.1016/j.carbon.2013.11.072
– ident: ref130/cit130
  doi: 10.1007/s12011-010-8901-0
– ident: ref65/cit65
  doi: 10.1016/j.sjbs.2016.04.012
– ident: ref3/cit3
  doi: 10.1016/j.tplants.2014.09.001
– ident: ref47/cit47
  doi: 10.1021/jf5052442
– ident: ref5/cit5
  doi: 10.3389/fpls.2019.01280
– ident: ref26/cit26
  doi: 10.1039/C4EN00138A
– ident: ref95/cit95
  doi: 10.1039/C6EN00146G
– ident: ref124/cit124
  doi: 10.1080/00380768.2004.10408447
– ident: ref13/cit13
  doi: 10.1038/s41565-018-0223-y
– ident: ref57/cit57
  doi: 10.1039/C7SC05476A
– ident: ref122/cit122
  doi: 10.1371/journal.pone.0167245
– ident: ref8/cit8
  doi: 10.1021/acs.jafc.7b02178
– ident: ref31/cit31
  doi: 10.1093/jxb/ers100
– ident: ref87/cit87
  doi: 10.1094/PHYTO-08-12-0183-R
– ident: ref107/cit107
  doi: 10.1021/acs.jafc.6b02239
– ident: ref94/cit94
  doi: 10.1039/C9EN00265K
– ident: ref100/cit100
  doi: 10.1039/C8RA04680H
– ident: ref85/cit85
  doi: 10.1021/acs.jafc.8b01600
– ident: ref90/cit90
  doi: 10.3389/fmicb.2018.00790
– ident: ref111/cit111
  doi: 10.1080/00103624.2013.863911
– ident: ref72/cit72
  doi: 10.1021/acs.jafc.7b01957
– ident: ref58/cit58
  doi: 10.1021/acs.est.9b00593
– ident: ref117/cit117
  doi: 10.1021/jf502716c
– ident: ref43/cit43
  doi: 10.1016/j.jcis.2017.11.064
– ident: ref126/cit126
  doi: 10.1039/C9EN00137A
– ident: ref127/cit127
  doi: 10.3390/agronomy9050246
– ident: ref20/cit20
  doi: 10.1038/s41565-019-0375-4
– ident: ref69/cit69
  doi: 10.1016/j.chemosphere.2018.09.120
– ident: ref129/cit129
  doi: 10.1016/j.cj.2018.06.001
– ident: ref83/cit83
  doi: 10.1016/j.scienta.2018.10.007
– ident: ref133/cit133
  doi: 10.1039/C3NR06079A
– ident: ref28/cit28
  doi: 10.1021/ja1084942
– ident: ref59/cit59
  doi: 10.1021/es504375t
– ident: ref137/cit137
  doi: 10.1021/acs.nanolett.5b04467
– ident: ref40/cit40
  doi: 10.1007/s10495-014-0972-5
– ident: ref92/cit92
  doi: 10.1021/acssuschemeng.9b04800
– ident: ref96/cit96
  doi: 10.1006/anbo.1996.0155
– ident: ref35/cit35
  doi: 10.1038/nnano.2007.260
– ident: ref91/cit91
  doi: 10.1021/acs.jafc.8b01727
– ident: ref9/cit9
  doi: 10.1038/s41565-019-0439-5
– ident: ref110/cit110
  doi: 10.1111/j.1747-0765.2007.00129.x
– ident: ref120/cit120
  doi: 10.1021/acs.jafc.7b05940
– ident: ref89/cit89
  doi: 10.1111/ppa.12443
– ident: ref135/cit135
  doi: 10.1071/EN19046
– ident: ref56/cit56
  doi: 10.1186/s11671-017-2404-2
– ident: ref104/cit104
  doi: 10.4081/nd.2013.e1
– ident: ref16/cit16
  doi: 10.1038/s41477-017-0063-z
– ident: ref30/cit30
  doi: 10.1021/nn200262u
– ident: ref112/cit112
  doi: 10.1166/jbns.2015.1296
– ident: ref64/cit64
  doi: 10.1016/j.chemosphere.2016.02.096
– ident: ref14/cit14
  doi: 10.1038/s41565-018-0131-1
– ident: ref109/cit109
  doi: 10.1105/tpc.010352
– ident: ref113/cit113
  doi: 10.3390/molecules23123375
– ident: ref131/cit131
  doi: 10.1038/nmat3890
– ident: ref45/cit45
  doi: 10.1002/aenm.201201014
– volume: 9
  start-page: 11302
  year: 2015
  ident: ref119/cit119
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b04979
– ident: ref22/cit22
  doi: 10.1021/acsnano.6b07781
– ident: ref49/cit49
  doi: 10.1021/acsomega.8b01894
– ident: ref75/cit75
  doi: 10.1021/nn4034794
– ident: ref108/cit108
  doi: 10.1038/s41598-017-08571-0
– ident: ref32/cit32
  doi: 10.1007/s00425-003-1105-5
– ident: ref68/cit68
  doi: 10.1186/s11671-017-1839-9
– ident: ref27/cit27
  doi: 10.1038/nnano.2010.24
– ident: ref93/cit93
  doi: 10.1146/annurev-phyto-080417-050108
– ident: ref17/cit17
  doi: 10.1038/s41565-019-0382-5
– ident: ref23/cit23
  doi: 10.1021/acsnano.8b09781
– ident: ref101/cit101
  doi: 10.3389/fpls.2016.00815
– ident: ref12/cit12
  doi: 10.1021/acs.jafc.5b05214
– ident: ref71/cit71
  doi: 10.1039/C9EN01035A
– ident: ref6/cit6
  doi: 10.1016/j.copbio.2017.07.003
– ident: ref33/cit33
  doi: 10.4161/psb.22455
– ident: ref55/cit55
  doi: 10.1016/j.envpol.2017.05.083
– ident: ref11/cit11
  doi: 10.1038/s41565-019-0470-6
– ident: ref19/cit19
  doi: 10.1038/nplants.2016.207
– ident: ref70/cit70
  doi: 10.1016/j.envpol.2019.02.031
– ident: ref81/cit81
  doi: 10.1016/j.matlet.2013.10.011
– ident: ref97/cit97
  doi: 10.1007/s11270-015-2738-2
– ident: ref10/cit10
  doi: 10.1038/s41565-019-0461-7
– ident: ref128/cit128
  doi: 10.1016/j.envexpbot.2013.10.003
– ident: ref54/cit54
  doi: 10.1016/j.envpol.2016.09.060
– ident: ref102/cit102
  doi: 10.1007/s11738-013-1369-8
– volume: 1
  start-page: 20
  year: 2018
  ident: ref66/cit66
  publication-title: SCIOL Biotechnology
– ident: ref134/cit134
  doi: 10.1098/rsfs.2018.0048
– volume-title: Encyclopedia of Soil Science
  year: 2016
  ident: ref136/cit136
– ident: ref37/cit37
  doi: 10.1021/nn4026806
– ident: ref60/cit60
  doi: 10.1002/ldr.2780
– ident: ref62/cit62
  doi: 10.1007/s13205-019-1626-7
– ident: ref99/cit99
  doi: 10.1016/j.chemosphere.2016.05.083
– ident: ref1/cit1
  doi: 10.1039/C6EN00573J
– ident: ref50/cit50
  doi: 10.1039/C8EN00323H
– ident: ref78/cit78
  doi: 10.1007/s10658-014-0399-4
– ident: ref42/cit42
  doi: 10.1016/j.jcis.2015.06.015
– ident: ref51/cit51
  doi: 10.1111/j.1365-3040.2009.02056.x
– ident: ref38/cit38
  doi: 10.1007/s11051-016-3642-4
– ident: ref53/cit53
  doi: 10.1371/journal.pone.0166248
– ident: ref123/cit123
  doi: 10.1007/s13593-011-0039-8
– ident: ref132/cit132
  doi: 10.1039/C3NR06079A
– ident: ref114/cit114
  doi: 10.1016/j.jhazmat.2009.05.084
– ident: ref25/cit25
  doi: 10.1021/cm061580n
– ident: ref80/cit80
  doi: 10.1016/j.scitotenv.2006.11.007
– ident: ref4/cit4
  doi: 10.1111/nph.12797
– volume: 7
  start-page: 1540
  year: 2016
  ident: ref61/cit61
  publication-title: RJBCS
– ident: ref24/cit24
  doi: 10.1039/C9EN00265K
– ident: ref116/cit116
  doi: 10.1021/es402659t
– ident: ref115/cit115
  doi: 10.1016/j.jplph.2004.09.009
– ident: ref15/cit15
  doi: 10.1038/nnano.2007.108
– ident: ref118/cit118
  doi: 10.1080/00380768.2015.1030690
– ident: ref74/cit74
  doi: 10.1007/s11051-015-2907-7
– ident: ref79/cit79
  doi: 10.1094/PHYTO-01-15-0006-R
– ident: ref63/cit63
  doi: 10.1002/etc.2697
– ident: ref77/cit77
  doi: 10.1371/journal.pone.0097881
– ident: ref41/cit41
  doi: 10.1039/C4NR03848G
– ident: ref106/cit106
  doi: 10.1021/acs.jafc.6b00838
– ident: ref44/cit44
  doi: 10.3389/fchem.2019.00046
– ident: ref36/cit36
  doi: 10.1039/C7SC05476A
– ident: ref73/cit73
  doi: 10.1016/j.envint.2013.11.015
– ident: ref125/cit125
  doi: 10.1016/j.sjbs.2013.04.005
– ident: ref18/cit18
  doi: 10.1038/s41565-019-0375-4
– ident: ref21/cit21
  doi: 10.1038/s41565-019-0382-5
– ident: ref88/cit88
  doi: 10.1021/acs.jafc.8b01345
– ident: ref34/cit34
  doi: 10.1021/acs.est.8b02440
– ident: ref48/cit48
  doi: 10.1021/acsnano.7b05723
– ident: ref2/cit2
  doi: 10.1038/nature11420
– ident: ref52/cit52
  doi: 10.1007/s11104-018-3770-y
– ident: ref105/cit105
  doi: 10.1021/acs.jafc.7b02961
– ident: ref121/cit121
  doi: 10.1021/acsami.8b01245
– ident: ref46/cit46
  doi: 10.1039/C8EN00323H
– ident: ref84/cit84
  doi: 10.1016/j.chemosphere.2015.09.028
– ident: ref7/cit7
  doi: 10.1021/jf302154y
– ident: ref29/cit29
  doi: 10.1002/smll.201403276
– ident: ref82/cit82
  doi: 10.1021/acssuschemeng.8b03379
– ident: ref67/cit67
  doi: 10.1016/j.scitotenv.2019.06.392
– volume: 46
  start-page: 261
  issue: 3
  year: 2014
  ident: ref76/cit76
  publication-title: Journal of nematology
– ident: ref39/cit39
  doi: 10.1021/acsami.8b01245
– start-page: 93
  volume-title: Zinc in Soils and Plants
  year: 1993
  ident: ref103/cit103
  doi: 10.1007/978-94-011-0878-2_7
SSID ssj0008570
Score 2.7068176
SecondaryResourceType review_article
Snippet Sustainable agriculture is a key component of the effort to meet the increased food demand of a rapidly increasing global population. Nano-biotechnology is a...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1935
SubjectTerms Agriculture
biomass
Biotechnology
Crops, Agricultural - growth & development
Crops, Agricultural - physiology
drought
grain yield
heat
heavy metals
herbivores
hydroponics
nanobiotechnology
nanocarriers
nanoparticles
Nanostructures - analysis
Nanotechnology
pathogens
plant growth
roots
salinity
seed germination
shoots
soil
stress tolerance
Stress, Physiological
sustainable agriculture
Title Nano-Biotechnology in Agriculture: Use of Nanomaterials to Promote Plant Growth and Stress Tolerance
URI http://dx.doi.org/10.1021/acs.jafc.9b06615
https://www.ncbi.nlm.nih.gov/pubmed/32003987
https://www.proquest.com/docview/2350097744
https://www.proquest.com/docview/2400452548
Volume 68
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Rb9MwELbQeIEHxmBAYSBPYg97SNvETmrvrVSUCgmE1FbqW2Q751GokqlJX_j13CVpB2NUfY3OiWyffd_l7r5j7H3sve0bgztgwKGDApbuwSwYxN6FBGhDTcXJX74mk7n8vIgXtzQ5dyP4Udgzruz-MN51tUXzSPXkD6MEzzDBoNF0d-sSUXuTzhEGCkFBG5K87w1kiFz5tyH6D7qsrcz4uGlXVNbkhJRc8rO7qWzX_fqXuvGACTxlT1qwyYeNdpywB5A_Y4-H1-uWcAOeswyv1yL4sCyq3T92vsz5HzJXfF4CLzwnScS3jcryquDf6lQ-4NT4qOKf0KGvvnOTZ3xaF6DwWbEC6tsBp2w-_jgbTYK280JgED5VgdbWa5UoIj7SsTI2hCyOQILrg1H9BAQoa6X0wqlEWERt0kZOiMxH1jtjxAt2lBc5vGLcCtEHHyoNSqF3JayzZmDQL5MOn1nVYRe4QGl7csq0DopHYVo_xFVL21XrsN52u1LX0pdTF43VnhGXuxE3DXXHHtnzrQakeL4oaGJyKDZlGomYal0GUu6RkTUzPTp_HfayUZ_dFwVl_2k1eH3gPN-wRxG59NRzRp-xo2q9gbeIeyr7rlb43-41_iY
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELaqcigc-uDVbaEYCQ4cst3Ezq7NbVtRFmgrRHel3iLbGdOWKkFN9sKv74yTDQ_RFVytsePH2PNN5sXYq9R7OzAGT8CAQwUFLL2DeTRKvYsJ0MaagpNPToeTmfx4np6vsHgRC4OTqHCkKhjxf2YXiPep7cp419cWpSSFld9DLJIQU48Pz7rHl_K1N14dcaQQG7SWyb-NQPLIVb_LoztAZhA2RxvsSzfN4GPyrT-vbd_9-COD43-tY5Ott9CTjxte2WIrUDxkD8Zfb9r0G_CI5fjYltHBZVl3f9z5ZcF_oXnLZxXw0nOiRLTbMDCvS_45OPYBpzJINX-P6n19wU2R87MQjsKn5TVQFQ94zGZH76aHk6itwxAZBFN1pLX1Wg0VpUHSqTI2hjxNQIIbgFGDIQhQ1krphVNDYRHDSZs4IXKfWO-MEU_YalEWsM24FWIAPlYalEJdS1hnzcigliYdtlnVY69xg7L2HlVZMJEncRYacdeydtd6bH9xaplrk5lTTY3rJT3edD2-N4k8ltC-XDBChreNTCimgHJeZYlIKfJlJOUSGhny1KMq2GNPGy7qvijIF1Cr0c4_rvMFW5tMT46z4w-nn3bZ_YSUfapGo5-x1fpmDs8REdV2L9yBW6s6BpY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5VRUJw4P1YnkaCA4dsN7Gza3NbCkt5VZXaRb1FtjOGQpVUTfbCr2fGyUaAYAVXa-z4MWPPZGa-AXiah-Am1tIJWPRkoKDje7BMZnnwKSu0qeHk5I_7072lenecH29Bvs6FoUk0NFITnfgs1Wdl6BEG0h1u_2qDHxtHLyWnll9grx0z9nz3cLiAGbO9i-xIE036Qe-d_NMI_Cb55tc36S-KZnxwFlfh0zDVGGfybbxq3dh__w3F8b_Xcg2u9CqomHc8cx22sLoBl-efz3sYDrwJJV26dfLypG6HP-_ipBI_0bwQywZFHQRTktbbMbJoa3EQA_xQcDmkVrwhM7_9ImxVisOYliKO6lPkah54C5aL10e7e0lfjyGxpFS1iTEuGD3VDIdkcm1dimWeoUI_QasnU5SonVMqSK-n0pEup1zmpSxD5oK3Vt6G7aqu8C4IJ-UEQ6oNak02l3Te2Zkla015anN6BM9og4penpoiusqztIiNtGtFv2sj2FmfXOF7UHOurXG6ocfzocdZB-ixgfbJmhkKkjp2pdgK61VTZDLnDJiZUhtoVMSrJ5NwBHc6Thq-KDkm0OjZvX9c52O4ePBqUXx4u__-PlzK2ObnojTmAWy35yt8SIpR6x5FMfgBJVEJGQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nano-Biotechnology+in+Agriculture%3A+Use+of+Nanomaterials+to+Promote+Plant+Growth+and+Stress+Tolerance&rft.jtitle=Journal+of+agricultural+and+food+chemistry&rft.au=Zhao%2C+Lijuan&rft.au=Lu%2C+Li&rft.au=Wang%2C+Aodi&rft.au=Zhang%2C+Huiling&rft.date=2020-02-19&rft.issn=0021-8561&rft.eissn=1520-5118&rft.volume=68&rft.issue=7&rft.spage=1935&rft.epage=1947&rft_id=info:doi/10.1021%2Facs.jafc.9b06615&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_jafc_9b06615
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8561&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8561&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8561&client=summon