Computational Modeling Reveals the Mechanism of Fluorescent State Recovery in the Reversibly Photoswitchable Protein Dreiklang
The unique properties of the photoswitchable protein Dreiklang are attributed to a reversible hydration/dehydration reaction at the imidazolinone ring of the chromophore. Recovery of the fluorescent state, which is associated with a chemical reaction of the chromophore’s dehydration, is an important...
Saved in:
Published in | The journal of physical chemistry. B Vol. 123; no. 42; pp. 8901 - 8909 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
24.10.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The unique properties of the photoswitchable protein Dreiklang are attributed to a reversible hydration/dehydration reaction at the imidazolinone ring of the chromophore. Recovery of the fluorescent state, which is associated with a chemical reaction of the chromophore’s dehydration, is an important part of the photocycle of this protein. Here we characterize the fluorescent (ON) and nonfluorescent (OFF) states of Dreiklang and simulate the thermal recovery reaction OFF → ON using computational approaches. By using molecular modeling methods including the quantum mechanics/molecular mechanics (QM/MM) technique, we characterize the structures and spectra of the ON- and OFF-states. The results are consistent with available experimental data. The computed reaction profile explains the observed recovery reaction and clarifies the mechanism of chemical transformations in the chromophore-containing pocket in Dreiklang. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1520-6106 1520-5207 1520-5207 |
DOI: | 10.1021/acs.jpcb.9b06988 |