Inserting Nitrogen: An Effective Concept To Create Nonplanar and Stimuli-Responsive Perylene Bisimide Analogues

Establishing design principles to create nonplanar π-conjugated molecules is crucial for the development of novel functional materials. Herein, we describe the synthesis and properties of dinaphtho­[1,8-bc:1′,8′-ef]­azepine bisimides (DNABIs). Their molecular design is conceptually based on the inse...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 141; no. 50; pp. 19807 - 19816
Main Authors Hayakawa, Sakiho, Kawasaki, Ayumi, Hong, Yongseok, Uraguchi, Daisuke, Ooi, Takashi, Kim, Dongho, Akutagawa, Tomoyuki, Fukui, Norihito, Shinokubo, Hiroshi
Format Journal Article
LanguageEnglish
Published WASHINGTON American Chemical Society 18.12.2019
Amer Chemical Soc
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Establishing design principles to create nonplanar π-conjugated molecules is crucial for the development of novel functional materials. Herein, we describe the synthesis and properties of dinaphtho­[1,8-bc:1′,8′-ef]­azepine bisimides (DNABIs). Their molecular design is conceptually based on the insertion of a nitrogen atom into a perylene bisimide core. We have synthesized several DNABI derivatives with a hydrogen atom, a primary alkyl group, or an aryl group on the central nitrogen atom. These DNABIs exhibit nonplanar conformations, flexible structural changes, and ambipolar redox activity. The steric effect around the central nitrogen atom substantially affects the overall structures and results in two different conformations: a nonsymmetric bent conformation and a symmetric twisted conformation, accompanied by a drastic change in electronic properties. Notably, the nonsymmetric DNABI undergoes unique structural changes in response to the application of an external electric field, which is due to molecular motions that are accompanied by an orientational fluctuation of the dipole moment. Furthermore, the addition of a chiral Brønsted base to N-unsubstituted DNABI affords control over the helical chirality via hydrogen-bonding interactions.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0002-7863
1520-5126
DOI:10.1021/jacs.9b09556