Vibrationally Assisted Direct Intersystem Crossing between the Same Charge-Transfer States for Thermally Activated Delayed Fluorescence: Analysis by Marcus–Hush Theory Including Reorganization Energy

Thermally activated delayed fluorescence (TADF) has recently become an extensively investigated phenomenon due to its high potential for application in organic optoelectronics. Currently, there is still lack of a model describing correctly basic photophysical parameters of organic TADF emitters. Thi...

Full description

Saved in:
Bibliographic Details
Published inThe journal of physical chemistry. B Vol. 125; no. 10; pp. 2696 - 2706
Main Authors Serdiuk, Illia E, Mońka, Michał, Kozakiewicz, Karol, Liberek, Beata, Bojarski, Piotr, Park, Soo Young
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 18.03.2021
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Thermally activated delayed fluorescence (TADF) has recently become an extensively investigated phenomenon due to its high potential for application in organic optoelectronics. Currently, there is still lack of a model describing correctly basic photophysical parameters of organic TADF emitters. This article presents such a photophysical model describing the rates of intersystem crossing (ISC), reverse ISC (rISC), and radiative deactivation in various media and emphasizing key importance of molecular vibrations on the example of a popular TADF dye 9,10-dihydro-9,9-dimethyl-10-(4-(4,6-diphenyl-1,3,5-triazin-2-yl)­phenyl)-acridine (DMAC-TRZ). The presented experimental and theoretical investigations prove that ISC and rISC can occur efficiently between the singlet and triplet states of the same charge-transfer nature (1CT and 3CT, respectively). In emitters with the orthogonal donor and acceptor fragments, such spin-forbidden 1CT ↔ 3CT transitions are activated by molecular vibrations. Namely, the change of dihedral angle between the donor and the acceptor affords reasonable spin–orbit coupling, which together with a small energy gap and reorganization energy enable 1CT ↔ 3CT transition rates reaching 1 × 107 s–1. Evidence of direct 1CT ↔ 3CT spin-flip and negligible role of a second triplet state, widely believed as a key parameter in the design of (r)­ISC materials, change significantly the current understanding of TADF mechanism. In authors’ opinion, photophysics, and molecular design principles of TADF emitters should be revised considering the importance of vibrationally enhanced 1CT ↔ 3CT transitions.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1520-6106
1520-5207
DOI:10.1021/acs.jpcb.0c10605