PP2C phosphatases Ptc1 and Ptc2 dephosphorylate PGK1 to regulate autophagy and aflatoxin synthesis in the pathogenic fungus Aspergillus flavus

is a model filamentous fungus that can produce aflatoxins when it infects agricultural crops. This study evaluated the protein phosphatase 2C (PP2C) family as a potential drug target with important physiological functions and pathological significance in . We found that two redundant PP2C phosphatas...

Full description

Saved in:
Bibliographic Details
Published inmBio Vol. 14; no. 5; p. e0097723
Main Authors Zhu, Zhuo, Yang, Mingkun, Yang, Guang, Zhang, Bei, Cao, Xiaohong, Yuan, Jun, Ge, Feng, Wang, Shihua
Format Journal Article
LanguageEnglish
Published United States American Society for Microbiology 31.10.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:is a model filamentous fungus that can produce aflatoxins when it infects agricultural crops. This study evaluated the protein phosphatase 2C (PP2C) family as a potential drug target with important physiological functions and pathological significance in . We found that two redundant PP2C phosphatases, Ptc1 and Ptc2, regulate conidia development, aflatoxin synthesis, autophagic vesicle formation, and seed infection. The target protein phosphoglycerate kinase 1 (PGK1) that interacts with Ptc1 and Ptc2 is essential to regulate metabolism and the autophagy process. Furthermore, Ptc1 and Ptc2 regulate the phosphorylation level of PGK1 S203, which is important for influencing aflatoxin synthesis. Our results provide a potential target for interdicting the toxicity of .
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2150-7511
2150-7511
DOI:10.1128/mbio.00977-23