Host–Guest-Induced Electron Transfer Triggers Radical-Cation Catalysis
Modifying the reactivity of substrates by encapsulation is a fundamental principle of capsule catalysis. Here we show an alternative strategy, wherein catalytic activation of otherwise inactive quinone “co-factors” by a simple Pd2L4 capsule promotes a range of bulk-phase, radical-cation cycloadditio...
Saved in:
Published in | Journal of the American Chemical Society Vol. 142; no. 5; pp. 2134 - 2139 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
WASHINGTON
American Chemical Society
05.02.2020
Amer Chemical Soc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Modifying the reactivity of substrates by encapsulation is a fundamental principle of capsule catalysis. Here we show an alternative strategy, wherein catalytic activation of otherwise inactive quinone “co-factors” by a simple Pd2L4 capsule promotes a range of bulk-phase, radical-cation cycloadditions. Solution electron-transfer experiments and cyclic voltammetry show that the cage anodically shifts the redox potential of the encapsulated quinone by a significant 1 V. Moreover, the capsule also protects the reduced semiquinone from protonation, thus transforming the role of quinones from stoichiometric oxidants into catalytic single-electron acceptors. We envisage that the host–guest-induced release of an “electron hole” will translate to various forms of non-encapsulated catalysis that involve other difficult-to-handle, highly reactive species. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0002-7863 1520-5126 1520-5126 |
DOI: | 10.1021/jacs.9b11273 |