Vegetation history, diversity patterns, and climate change across the Triassic/Jurassic boundary
High-resolution palynological data sets from shallow marine Triassic-Jurassic (Tr/J) boundary beds of two principal sections in Europe (Hochalplgraben in Austria and St. Audrie's Bay in the United Kingdom) were analyzed to reconstruct changes in vegetation, biodiversity, and climate. In Hochalp...
Saved in:
Published in | Paleobiology Vol. 38; no. 2; pp. 240 - 264 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York, USA
The Paleontological Society
01.03.2012
Cambridge University Press Paleontological Society |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | High-resolution palynological data sets from shallow marine Triassic-Jurassic (Tr/J) boundary beds of two principal sections in Europe (Hochalplgraben in Austria and St. Audrie's Bay in the United Kingdom) were analyzed to reconstruct changes in vegetation, biodiversity, and climate. In Hochalplgraben, a hardwood gymnosperm forest with conifers and seed ferns is replaced by vegetation with dominant ferns, club mosses and liverworts, which concurs with an increased diversification of spore types during the latest Rhaetian. Multivariate statistical analysis reveals a trend to warmer and wetter conditions across the Tr/J boundary in Hochalplgraben. The vegetation changes in St. Audrie's Bay are markedly different. Here, a mixed gymnosperm forest is replaced by monotonous vegetation consisting mainly of Cheirolepidiaceae (80–100%). This change is caused by a transition to a warmer and more arid climate. The observed diversity decrease in St. Audrie's Bay affirms this interpretation. Although both sections show major vegetation changes, neither of them demonstrates a distinctive floral mass extinction. A compilation of Tr/J boundary sections across the world demonstrates the presence of Cheirolepidiaceae-dominated forests in the Pangaean interior and increases in abundance of spore-producing plants adjacent to the Tethys Ocean. We propose that the non-uniform vegetation changes reflected in the Tr/J palynological records are the result of environmental changes caused by Central Atlantic Magmatic Province volcanism. The increase in greenhouse gases caused a warmer climate and an enhanced thermal contrast between the continent and the seas. Consequently, the monsoon system got stronger and induced a drier continental interior and more intensive rainfall near the margins of the Tethys Ocean. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0094-8373 1938-5331 |
DOI: | 10.1666/09071.1 |