A comparison of smooth and blocky inversion methods in 2D electrical imaging surveys

Two-dimensional electrical imaging surveys are now widely used in engineering and environmental surveys to map moderately complex structures. In order to adequately resolve such structures with arbitrary resistivity distributions, the regularised least-squares optimisation method with a cell-based m...

Full description

Saved in:
Bibliographic Details
Published inExploration geophysics (Melbourne) Vol. 34; no. 3; pp. 182 - 187
Main Authors Loke, M.H., Acworth, Ian, Dahlin, Torleif
Format Journal Article
LanguageEnglish
Published 01.06.2003
Online AccessGet full text

Cover

Loading…
More Information
Summary:Two-dimensional electrical imaging surveys are now widely used in engineering and environmental surveys to map moderately complex structures. In order to adequately resolve such structures with arbitrary resistivity distributions, the regularised least-squares optimisation method with a cell-based model is frequently used in the inversion of the electrical imaging data. The L2 norm based least-squares optimisation method that attempts to minimise the sum of squares of the spatial changes in the model resistivity is often used. The resulting inversion model has a smooth variation in the resistivity values. In cases where the true subsurface resistivity consists of several regions that are approximately homogenous internally and separated by sharp boundaries, the result obtained by the smooth inversion method is not optimal. It tends to smear out the boundaries and give resistivity values that are too low or too high. The blocky or L1 norm optimisation method can be used for such situations. This method attempts to minimise the sum of the absolute values of the spatial changes in the model resistivity. It tends to produce models with regions that are piecewise constant and separated by sharp boundaries. Results from tests of the smooth and blocky inversion methods with several synthetic and field data sets highlight the strengths and weaknesses of both methods. The smooth inversion method gives better results for areas where the subsurface resistivity changes in a gradual manner, while the blocky inversion method gives significantly better results where there are sharp boundaries. While fast computers and software have made the task of interpreting data from electrical imaging surveys much easier, it remains the responsibility of the interpreter to choose the appropriate tool for the task based on the available geological information. Exploration Geophysics 34(3) 182 - 187  doi:10.1071/EG03182
Bibliography:Exploration Geophysics is published by CSIRO PUBLISHING on behalf of the Australian Society of Exploration Geophysicists. Papers published report the results of significant case histories and relevant original research in geophysics, with emphasis on the Australian and similar environments.
ISSN:0812-3985
1834-7533
DOI:10.1071/EG03182