Creating a Coastal National Elevation Database (CoNED) for Science and Conservation Applications
Thatcher, C.A.; Brock, J.C.; Danielson, J.J.; Poppenga, S.K.; Gesch, D.B.; Palaseanu-Lovejoy, M.E.; Barras, J.A.; Evans, G.A., and Gibbs, A.E., 2016. Creating a Coastal National Elevation Database (CoNED) for science and conservation applications. In: Brock, J.C.; Gesch, D.B.; Parrish, C.E.; Rogers,...
Saved in:
Published in | Journal of coastal research Vol. 76; no. sp1; pp. 64 - 74 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Fort Lauderdale
Coastal Education and Research Foundation
01.12.2016
Coastal Education and Research Foundation, Inc. CERF Allen Press Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Thatcher, C.A.; Brock, J.C.; Danielson, J.J.; Poppenga, S.K.; Gesch, D.B.; Palaseanu-Lovejoy, M.E.; Barras, J.A.; Evans, G.A., and Gibbs, A.E., 2016. Creating a Coastal National Elevation Database (CoNED) for science and conservation applications. In: Brock, J.C.; Gesch, D.B.; Parrish, C.E.; Rogers, J.N., and Wright, C.W. (eds.), Advances in Topobathymetric Mapping, Models, and Applications. Journal of Coastal Research, Special Issue, No. 76, pp. 64–74. Coconut Creek (Florida), ISSN 0749-0208. The U.S. Geological Survey is creating the Coastal National Elevation Database, an expanding set of topobathymetric elevation models that extend seamlessly across coastal regions of high societal or ecological significance in the United States that are undergoing rapid change or are threatened by inundation hazards. Topobathymetric elevation models are raster datasets useful for inundation prediction and other earth science applications, such as the development of sediment-transport and storm surge models. These topobathymetric elevation models are being constructed by the broad regional assimilation of numerous topographic and bathymetric datasets, and are intended to fulfill the pressing needs of decision makers establishing policies for hazard mitigation and emergency preparedness, coastal managers tasked with coastal planning compatible with predictions of inundation due to sea-level rise, and scientists investigating processes of coastal geomorphic change. A key priority of this coastal elevation mapping effort is to foster collaborative lidar acquisitions that meet the standards of the USGS National Geospatial Program's 3D Elevation Program, a nationwide initiative to systematically collect high-quality elevation data. The focus regions are located in highly dynamic environments, for example in areas subject to shoreline change, rapid wetland loss, hurricane impacts such as overwash and wave scouring, and/or human-induced changes to coastal topography. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0749-0208 1551-5036 |
DOI: | 10.2112/SI76-007 |