Integrated Fast Assembly of Free-Standing Lithium Titanate/Carbon Nanotube/Cellulose Nanofiber Hybrid Network Film as Flexible Paper-Electrode for Lithium-Ion Batteries

A free-standing lithium titanate (Li4Ti5O12)/carbon nanotube/cellulose nanofiber hybrid network film is successfully assembled by using a pressure-controlled aqueous extrusion process, which is highly efficient and easily to scale up from the perspective of disposable and recyclable device productio...

Full description

Saved in:
Bibliographic Details
Published inACS applied materials & interfaces Vol. 7; no. 20; pp. 10695 - 10701
Main Authors Cao, Shaomei, Feng, Xin, Song, Yuanyuan, Xue, Xin, Liu, Hongjiang, Miao, Miao, Fang, Jianhui, Shi, Liyi
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 27.05.2015
Subjects
Online AccessGet full text
ISSN1944-8244
1944-8252
1944-8252
DOI10.1021/acsami.5b02693

Cover

Loading…
More Information
Summary:A free-standing lithium titanate (Li4Ti5O12)/carbon nanotube/cellulose nanofiber hybrid network film is successfully assembled by using a pressure-controlled aqueous extrusion process, which is highly efficient and easily to scale up from the perspective of disposable and recyclable device production. This hybrid network film used as a lithium-ion battery (LIB) electrode has a dual-layer structure consisting of Li4Ti5O12/carbon nanotube/cellulose nanofiber composites (hereinafter referred to as LTO/CNT/CNF), and carbon nanotube/cellulose nanofiber composites (hereinafter referred to as CNT/CNF). In the heterogeneous fibrous network of the hybrid film, CNF serves simultaneously as building skeleton and a biosourced binder, which substitutes traditional toxic solvents and synthetic polymer binders. Of importance here is that the CNT/CNF layer is used as a lightweight current collector to replace traditional heavy metal foils, which therefore reduces the total mass of the electrode while keeping the same areal loading of active materials. The free-standing network film with high flexibility is easy to handle, and has extremely good conductivity, up to 15.0 S cm–1. The flexible paper-electrode for LIBs shows very good high rate cycling performance, and the specific charge/discharge capacity values are up to 142 mAh g–1 even at a current rate of 10 C. On the basis of the mild condition and fast assembly process, a CNF template fulfills multiple functions in the fabrication of paper-electrode for LIBs, which would offer an ever increasing potential for high energy density, low cost, and environmentally friendly flexible electronics.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1944-8244
1944-8252
1944-8252
DOI:10.1021/acsami.5b02693