Amorphous Framework in Electrodeposited CuBiTe Thermoelectric Thin Films with High Room-Temperature Performance
Bismuth telluride-based alloys are the most efficient thermoelectric materials near room temperature and widely used in commercial thermoelectric devices. Nevertheless, their thermoelectric performance needs to be improved further for wide-scale implementation either as a thermoelectric generator or...
Saved in:
Published in | ACS applied electronic materials Vol. 3; no. 4; pp. 1794 - 1803 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
27.04.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Bismuth telluride-based alloys are the most efficient thermoelectric materials near room temperature and widely used in commercial thermoelectric devices. Nevertheless, their thermoelectric performance needs to be improved further for wide-scale implementation either as a thermoelectric generator or cooler. Here, we propose a simultaneous codeposition of CuBiTe thin films and their phase transition strategy via the traditional electrodeposition process. With just 13 atom % Cu doping, crystalline-to-amorphous phase transformation resulted for the electroplated CuBiTe alloy. A close look at the alloy composition revealed spike-shaped nanocrystalline Bi2Te3 embedded in the CuBiTe amorphous matrix. Our result shows an exceptionally high power factor (3.02 mW m–1 K–2), which comes from the enhanced Seebeck coefficient (−275 μV K–1) and high electrical conductivity (3.99 × 104 S m–1) of CuBiTe films. Therefore, it can be suggested that the adopted strategy to form a unique nanocrystallite-embedded amorphous framework provides a platform to develop next-generation high-performance thermoelectric materials with an extraordinary power factor. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2637-6113 2637-6113 |
DOI: | 10.1021/acsaelm.1c00063 |