Insight in the PCB-degrading functional community in long-term contaminated soil under bioremediation

Purpose A small-scale bioremediation assay was developed in order to get insight into the functioning of a polychlorinated biphenyl (PCB) degrading community during the time course of bioremediation treatment of a contaminated soil. The study was conducted with the aim to better understand the key m...

Full description

Saved in:
Bibliographic Details
Published inJournal of soils and sediments Vol. 11; no. 2; pp. 290 - 300
Main Authors Petrić, Ines, Hršak, Dubravka, Fingler, Sanja, Udiković-Kolić, Nikolina, Bru, David, Martin-Laurent, Fabrice
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Berlin/Heidelberg : Springer-Verlag 01.02.2011
Springer-Verlag
Springer Nature B.V
Springer Verlag
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Purpose A small-scale bioremediation assay was developed in order to get insight into the functioning of a polychlorinated biphenyl (PCB) degrading community during the time course of bioremediation treatment of a contaminated soil. The study was conducted with the aim to better understand the key mechanisms involved in PCB-removal from soils. Materials and methods Two bioremediation strategies were applied in the assay: (a) biostimulation (addition of carvone as inducer of biphenyl pathway, soya lecithin for improving PCB bioavailability, and xylose as supplemental carbon source) and (b) bioaugmentation with selected seed cultures TSZ7 or Rhodococcus sp. Z6 originating from the transformer station soil and showing substantial PCB-degrading activity. Functional PCB-degrading community was investigated by using molecular-based approaches (sequencing, qPCR) targeting bphA and bphC genes, coding key enzymes of the upper biphenyl pathway, in soil DNA extracts. In addition, kinetics of PCBs removal during the bioremediation treatment was determined using gas chromatography mass spectrometry analyses. Results and discussion bphA-based phylogeny revealed that bioremediation affected the structure of the PCB-degrading community in soils, with Rhodococcus-like bacterial populations developing as dominant members. Tracking of this population further indicated that applied bioremediation treatments led to its enrichment within the PCB-degrading community. The abundance of the PCB-degrading community, estimated by quantifying the copy number of bphA and bphC genes, revealed that it represented up to 0.3% of the total bacterial community. All bioremediation treatments were shown to enhance PCB reduction in soils, with approximately 40% of total PCBs being removed during a 1-year period. The faster PCB reduction achieved in bioaugmented soils suggested an important role of the seed cultures in bioremediation processes. Conclusions The PCBs degrading community was modified in response to bioremediation treatments, leading to partial removal of PCBs from contaminated soil. The abundance of the PCB-degrading community was increased, and Rhodococcus-like bacterial population was identified as its key player. Combination of molecular approaches with chemical analyses is of prime interest to monitor microbial processes involved in the bioremediation treatment. They offer new insight in the managing of PCBs contaminated sites providing the opportunity to design the bioremediation strategy based on on-site evaluation of PCBs degrading ability of the soil microbial community.
Bibliography:http://dx.doi.org/10.1007/s11368-010-0299-y
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1439-0108
1614-7480
DOI:10.1007/s11368-010-0299-y