Freezing Directed Construction of Bio/Nano Interfaces: Reagentless Conjugation, Denser Spherical Nucleic Acids, and Better Nanoflares
While nanoparticle solutions cannot freeze in general, they may remain stable in the presence of polymer stabilizers. We herein communicate that gold nanoparticles (AuNPs) are stable in the presence of thiolated DNA after a freeze–thaw cycle. The DNA is conjugated to AuNPs during freezing without ad...
Saved in:
Published in | Journal of the American Chemical Society Vol. 139; no. 28; pp. 9471 - 9474 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
19.07.2017
|
Online Access | Get full text |
Cover
Loading…
Summary: | While nanoparticle solutions cannot freeze in general, they may remain stable in the presence of polymer stabilizers. We herein communicate that gold nanoparticles (AuNPs) are stable in the presence of thiolated DNA after a freeze–thaw cycle. The DNA is conjugated to AuNPs during freezing without additional reagents and the conjugation can be completed in a few minutes. More importantly, the DNA density is 20–30% higher than that prepared by the typical salt-aging method. By lowering temperature, DNA hybridization is also promoted, allowing the construction of better nanoflares with doubled probe density and signaling sensitivity. This freezing method works for AuNPs from 5 to 100 nm and all tested DNA sequences. The mechanism was studied by separating the effect of temperature, freezing and thawing, where the exclusion of salt and AuNPs by the growing ice crystals is deemed critical. In addition to developing a simple method, this study articulates unique physical processes during freezing with important fundamental surface science implications, and it could be extended to other systems. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0002-7863 1520-5126 |
DOI: | 10.1021/jacs.7b04885 |