Well-Defined and Structurally Diverse Aromatic Alternating Polyesters Synthesized by Simple Phosphazene Catalysis

Alcohol-initiated ring-opening alternating copolymerization (ROAP) of phthalic anhydride (PA) and a variety of mono-, di-, and trisubstituted epoxides has been performed with a weak phosphazene base (t-BuP1) as the catalyst. Each product exhibits a perfectly alternating sequence distribution, contro...

Full description

Saved in:
Bibliographic Details
Published inMacromolecules Vol. 51; no. 6; pp. 2247 - 2257
Main Authors Li, Heng, Luo, Huitong, Zhao, Junpeng, Zhang, Guangzhao
Format Journal Article
LanguageEnglish
Published American Chemical Society 27.03.2018
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Alcohol-initiated ring-opening alternating copolymerization (ROAP) of phthalic anhydride (PA) and a variety of mono-, di-, and trisubstituted epoxides has been performed with a weak phosphazene base (t-BuP1) as the catalyst. Each product exhibits a perfectly alternating sequence distribution, controlled molar mass (M n up to 124 kg mol–1), and low dispersity (Đ M < 1.15, mostly). Full conversion of PA can be reached in 0.5–24 h depending on the substituent of the epoxide, the targeted degree of polymerization, and the amount of t-BuP1 used (0.2–5 mol % of PA) when the reactions are conducted under solvent-free conditions at 100 °C with a small excess of the epoxide (0.5 equiv of PA). The glass transition temperature of the polyester ranges from −14 to 135 °C. The living nature of the ROAP allows one-pot construction of well-defined block-alternating copolymers through sequential addition of two epoxides. Statistical-alternating copolymers have also been synthesized by copolymerization of PA and two mixed epoxides. Thus, the structural diversity of aromatic alternating polyesters synthesized by this simple organocatalysis has been largely enriched.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0024-9297
1520-5835
1520-5835
DOI:10.1021/acs.macromol.8b00159