Multicomponent Pt-Based Zigzag Nanowires as Selectivity Controllers for Selective Hydrogenation Reactions
The selective hydrogenation of α, β-unsaturated aldehyde is an extremely important transformation, while developing efficient catalysts with desirable selectivity to highly value-added products is challenging, mainly due to the coexistence of two conjugated unsaturated functional groups. Herein, we...
Saved in:
Published in | Journal of the American Chemical Society Vol. 140; no. 27; pp. 8384 - 8387 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
11.07.2018
|
Online Access | Get full text |
Cover
Loading…
Summary: | The selective hydrogenation of α, β-unsaturated aldehyde is an extremely important transformation, while developing efficient catalysts with desirable selectivity to highly value-added products is challenging, mainly due to the coexistence of two conjugated unsaturated functional groups. Herein, we report that a series of Pt-based zigzag nanowires (ZNWs) can be adopted as selectivity controllers for α, β-unsaturated aldehyde hydrogenation, where the excellent unsaturated alcohol (UOL) selectivity (>95%) and high saturated aldehyde (SA) selectivity (>94%) are achieved on PtFe ZNWs and PtFeNi ZNWs+AlCl3, respectively. The excellent UOL selectivity of PtFe ZNWs is attributed to the lower electron density of the surface Pt atoms, while the high SA selectivity of PtFeNi ZNWs+AlCl3 is due to synergy between PtFeNi ZNWs and AlCl3, highlighting the importance of Pt-based NWs with precisely controlled surface and composition for catalysis and beyond. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0002-7863 1520-5126 |
DOI: | 10.1021/jacs.8b03862 |