Probing Light-Stimulated Activities in the Retina via Transparent Graphene Electrodes
Graphene has triggered tremendous research due to its superior properties. In particular, the intrinsic high light transmission illustrates the unique advantage in neural biosensing. Here, we combine perforated flexible graphene electrodes with microfluidic platforms to explore real-time extracellul...
Saved in:
Published in | ACS applied bio materials Vol. 5; no. 1; pp. 305 - 312 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
17.01.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Graphene has triggered tremendous research due to its superior properties. In particular, the intrinsic high light transmission illustrates the unique advantage in neural biosensing. Here, we combine perforated flexible graphene electrodes with microfluidic platforms to explore real-time extracellular electrical activities of retinal ganglion cells (RGCs). Under light stimulation, the transparent graphene electrodes have demonstrated the capability of recording the electrical activities of stimulated RGCs in direct contact. Different types of RGCs have shown three distinct light induced patterns, ON, OFF, and ON–OFF, which are primarily operated by cone photoreceptors. Moreover, the observed spiking waveforms can be divided into two groups: the biphasic waveform usually occurs at contacts with soma, while the triphasic waveform is likely related to the axon. Under high K+ stimulation, the graphene electrodes exhibit higher electrical sensitivity than gold counterparts with an average 2.5-fold enhancement in spiking amplitude. Furthermore, a strong response has been observed with the firing rate first increasing and then ceasing, which could be due to the potassium-induced neural depolarization. These results show that graphene electrodes can be a promising candidate in the electrophysiology studies of retina and offer a route to engineering future two-dimensional materials-based biosensors. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2576-6422 2576-6422 |
DOI: | 10.1021/acsabm.1c01091 |