Dominant rock properties affecting the performance of conical picks and the comparison of some experimental and theoretical results
Conical picks are the essential cutting tools used especially on roadheaders, continuous miners and shearers and their cutting performance affects directly the efficiency and the cost of rock/mineral excavation. In this study, in order to better understand the effects of dominant rock properties on...
Saved in:
Published in | International journal of rock mechanics and mining sciences (Oxford, England : 1997) Vol. 43; no. 1; pp. 139 - 156 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
2006
Elsevier Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Conical picks are the essential cutting tools used especially on roadheaders, continuous miners and shearers and their cutting performance affects directly the efficiency and the cost of rock/mineral excavation. In this study, in order to better understand the effects of dominant rock properties on cutter performance, 22 different rock specimens having compressive strength values varying from 10 to 170
MPa are first subjected to a wide range of mechanical tests. Then, laboratory full-scale linear cutting tests with different depth of cut and cutter spacing values are realized on large blocks of rock specimens using one type of conical pick. Specific energy, cutting and normal force values for relieved and unrelieved cutting modes are recorded using a triaxial force dynamometer with capacity of 50
tonnes and a data acquisition system. Cutter force and specific energy values are correlated with rock properties and theoretical force and specific energy values obtained from widely used theoretical approaches.
The results indicate that uniaxial compressive strength among the rock properties investigated is best correlated with the measured cutter performance values, which is in good agreement with previous studies. However, it is also emphasized in this study that Brazilian tensile strength, Schmidt hammer rebound values, static and dynamic elasticity modulus are also dominant rock properties affecting cutter performance.
Theoretical specific energy defined by different researchers has a meaningful relationship with the experimental specific energy, which is an essential parameter for predicting the instantaneous cutting rates of mechanical excavation systems. It is also demonstrated that the experimental cutter forces obtained for 5
mm depth of cut are in good agreement with theoretical force values, if the friction angle between rock and cutting tool is included in the theoretical formulation. It is emphasized that, to some extend, laboratory tests can help to minimize high cost of a trial–error approach in the field. |
---|---|
ISSN: | 1365-1609 1873-4545 |
DOI: | 10.1016/j.ijrmms.2005.04.009 |