Introduction of Multilayered Dual-Signal Nanotags into a Colorimetric-Fluorescent Coenhanced Immunochromatographic Assay for Ultrasensitive and Flexible Monitoring of SARS-CoV‑2

Timely, accurate, and rapid diagnosis of SARS-CoV-2 is a key factor in controlling the spread of the epidemic and guiding treatments. Herein, a flexible and ultrasensitive immunochromatographic assay (ICA) was proposed based on a colorimetric/fluorescent dual-signal enhancement strategy. We first fa...

Full description

Saved in:
Bibliographic Details
Published inACS applied materials & interfaces Vol. 15; no. 9; pp. 12327 - 12338
Main Authors Yang, Xingsheng, Yu, Qing, Cheng, Xiaodan, Wei, Hongjuan, Zhang, Xiaochang, Rong, Zhen, Wang, Chongwen, Wang, Shengqi
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 08.03.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Timely, accurate, and rapid diagnosis of SARS-CoV-2 is a key factor in controlling the spread of the epidemic and guiding treatments. Herein, a flexible and ultrasensitive immunochromatographic assay (ICA) was proposed based on a colorimetric/fluorescent dual-signal enhancement strategy. We first fabricated a highly stable dual-signal nanocomposite (SADQD) by continuously coating one layer of 20 nm AuNPs and two layers of quantum dots onto a 200 nm SiO2 nanosphere to provide strong colorimetric signals and enhanced fluorescence signals. Two kinds of SADQD with red and green fluorescence were conjugated with spike (S) antibody and nucleocapsid (N) antibody, respectively, and used as dual-fluorescence/colorimetric tags for the simultaneous detection of S and N proteins on one test line of ICA strip, which can not only greatly reduce the background interference and improve the detection accuracy but also achieve a higher colorimetric sensitivity. The detection limits of the method for target antigens via colorimetric and fluorescence modes were as low as 50 and 2.2 pg/mL, respectively, which were 5 and 113 times more sensitive than those from the standard AuNP-ICA strips, respectively. This biosensor will provide a more accurate and convenient way to diagnose COVID-19 in different application scenarios.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
This article is made available via the ACS COVID-19 subset for unrestricted RESEARCH re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.2c21042