Geochemistry of metalliferous, hydrothermal deposits in the Aeolian arc (Tyrrhenian Sea)

In shallow-water areas of the submerged volcanic complex around the island of Panarea (Aeolian archipelago), hydrothermal precipitation of both low-temperature Fe-oxyhydroxide-rich red muds and crusts, and high-temperature, sediment-hosted massive sulfides was discovered during an integrated, high-r...

Full description

Saved in:
Bibliographic Details
Published inJournal of volcanology and geothermal research Vol. 88; no. 4; pp. 305 - 323
Main Authors Savelli, C, Marani, M, Gamberi, F
Format Journal Article
LanguageEnglish
Published Lausanne Elsevier B.V 01.03.1999
Amsterdam Elsevier
New York, NY
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In shallow-water areas of the submerged volcanic complex around the island of Panarea (Aeolian archipelago), hydrothermal precipitation of both low-temperature Fe-oxyhydroxide-rich red muds and crusts, and high-temperature, sediment-hosted massive sulfides was discovered during an integrated, high-resolution survey. Iron-rich crusts were also found on the bathymetric high of Secca del Capo, north of Salina island. The exhalative iron-rich sediments occur in small (closed) depressions or in proximity to faults and scarps at water depths ranging from 55 to 285 m. The principal chemical characteristics of these deposits are high, but variable, Fe content ranging from 12.2 to 45%, and low contents of the transition elements Mn, Cu, Zn, Ni and Co. The low contents of Cu, Ni and Co suggest a hydrothermal origin. The Fe-oxyhydroxide deposits are enriched in light rare earth element (REE) (35–110×chondrite) compared to heavy REE (10–25×chondrite). Their REE patterns are similar to those of associated calc-alkaline volcanics: negative slope of light REE and a horizontal distribution of the heavy ones. This contrasts with the pattern for iron and manganese oxides of hydrogenous origin, which have tilted trends of heavy REE paralleling that of seawater. The mineralogy of the polymetallic sulfide deposits consists of galena, sphalerite, pyrite and barite in the form of silt–sand grains and decimeter-sized fragments disseminated in clay, 30 cm below the seabed, at a waterdepth of 80 m. The chemistry of the Aeolian iron-rich, low-temperature deposits and of the high-temperature, Ba-rich Pb and Zn sulfides suggests that they are genetically analogous to, respectively, the kuroko-type iron formation (`tetsusekiei') and the black ore exposed in the Miocene Hokuroku district of Japan.
ISSN:0377-0273
1872-6097
DOI:10.1016/S0377-0273(99)00007-4