HACE2-Exosome-Based Nano-Bait for Concurrent SARS-CoV‑2 Trapping and Antioxidant Therapy

Corona Virus Disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is seriously threatening human health. Following SARS-CoV-2 infection, immune cell infiltration creates an inflammatory and oxidative microenvironment, which can cause pneumonia, se...

Full description

Saved in:
Bibliographic Details
Published inACS applied materials & interfaces Vol. 14; no. 4; pp. 4882 - 4891
Main Authors Ma, Xiaoyi, Guo, Shiyu, Ruan, Shuangrong, Liu, Yao, Zang, Jie, Yang, Yushan, Dong, Haiqing, Li, Yan, Ren, Tianbin, An, Maomao, Li, Yongyong
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 02.02.2022
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Corona Virus Disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is seriously threatening human health. Following SARS-CoV-2 infection, immune cell infiltration creates an inflammatory and oxidative microenvironment, which can cause pneumonia, severe acute respiratory syndrome, kidney failure, and even death. Clinically, a safe and effective treatment strategy remains to be established. Herein, a nano-bait strategy for inhibition of SARS-CoV-2 infection by redirecting viral attack while simultaneously relieving inflammation is developed. Specifically, the nano-bait was based on the exosome-sheathed polydopamine (PDA@Exosome) nanoparticles, which were generated by exocytosis of the PDA nanoparticles from H293T cells. In this approach, PDA@Exosome inherits from the source cells of H293T cells a surface display of ACE2 through pre-engineered expression. The resulting PDA@Exosome can compete with ACE2-expressing epithelial cells for S protein binding, in either the pre-exposure or post-exposure route. Moreover, relying on the ability of PDA to intercept and deactivate radical species, the PDA@Exosome can significantly attenuate the level of inflammatory cytokines by mediating oxidative stress, a major cause of organ injury. Due to its high trapping, multiple antioxidant ability, and good biocompatibility, the HACE2-exosome based nano-bait is a promising robust antiviral nanotherapeutics for the ongoing COVID-19 pandemic.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
This article is made available via the ACS COVID-19 subset for unrestricted RESEARCH re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.1c19541