Single Crystal Proton Conduction Study of a Metal Organic Framework of Modest Water Stability
A sulfonated indium (In) metal organic framework (MOF) is reported with an anionic layered structure incorporating hydrogen-bonded dimethylammonium cations and water molecules. The MOF becomes amorphous in >60% relative humidity; however, impedance analysis of pelletized powders revealed a proton...
Saved in:
Published in | Journal of the American Chemical Society Vol. 139; no. 21; pp. 7176 - 7179 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
31.05.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | A sulfonated indium (In) metal organic framework (MOF) is reported with an anionic layered structure incorporating hydrogen-bonded dimethylammonium cations and water molecules. The MOF becomes amorphous in >60% relative humidity; however, impedance analysis of pelletized powders revealed a proton conduction value of over 10–3 S cm–1 at 25 °C and 40% RH, a very high proton conduction value for low humidity and moderate temperature. Given the modest humidity stability of the MOF, triaxial impedance analyses on a single crystal was performed and confirmed bulk proton conductivity over 10–3 S cm–1 along two axes corroborating the data from the pellet. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0002-7863 1520-5126 1520-5126 |
DOI: | 10.1021/jacs.7b03397 |