Tuning Selectivity of CO2 Hydrogenation Reactions at the Metal/Oxide Interface
The chemical transformation of CO2 not only mitigates the anthropogenic CO2 emission into the Earth’s atmosphere but also produces carbon compounds that can be used as precursors for the production of chemicals and fuels. The activation and conversion of CO2 can be achieved on multifunctional cataly...
Saved in:
Published in | Journal of the American Chemical Society Vol. 139; no. 29; pp. 9739 - 9754 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
26.07.2017
American Chemical Society (ACS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The chemical transformation of CO2 not only mitigates the anthropogenic CO2 emission into the Earth’s atmosphere but also produces carbon compounds that can be used as precursors for the production of chemicals and fuels. The activation and conversion of CO2 can be achieved on multifunctional catalytic sites available at the metal/oxide interface by taking advantage of the synergy between the metal nanoparticles and oxide support. Herein, we look at the recent progress in mechanistic studies of CO2 hydrogenation to C1 (CO, CH3OH, and CH4) compounds on metal/oxide catalysts. On this basis, we are able to provide a better understanding of the complex reaction network, grasp the capability of manipulating structure and combination of metal and oxide at the interface in tuning selectivity, and identify the key descriptors to control the activity and, in particular, the selectivity of catalysts. Finally, we also discuss challenges and future research opportunities for tuning the selective conversion of CO2 on metal/oxide catalysts. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 BNL-114374-2017-JA USDOE Office of Science (SC), Basic Energy Sciences (BES) SC0012704 |
ISSN: | 0002-7863 1520-5126 1520-5126 |
DOI: | 10.1021/jacs.7b05362 |