An Experimental Study on Mechanisms for Sediment Transformation Due to Riverbank Collapse

Riverbank erosion is a natural process in rivers that can become exacerbated by direct and indirect human impacts. Unfortunately, riverbank degradation can cause societal impacts such as property loss and sedimentation of in-stream structures, as well as environmental impacts such as water quality i...

Full description

Saved in:
Bibliographic Details
Published inWater (Basel) Vol. 11; no. 3; p. 529
Main Authors Shu, Anping, Duan, Guosheng, Rubinato, Matteo, Tian, Lu, Wang, Mengyao, Wang, Shu
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.03.2019
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Riverbank erosion is a natural process in rivers that can become exacerbated by direct and indirect human impacts. Unfortunately, riverbank degradation can cause societal impacts such as property loss and sedimentation of in-stream structures, as well as environmental impacts such as water quality impact. The frequency, magnitude, and impact of riverbank collapse events in China and worldwide are forecasted to increase under climate change. To understand and mitigate the risk of riverbank collapse, experimental/field data in real conditions are required to provide robust calibration and validation of hydraulic and mathematical models. This paper presents an experimental set of tests conducted to characterize riverbank erosion and sediment transport for banks with slopes of 45°, 60°, 75°, and 90° and quantify the amount of sediments transported by the river, deposited within the bank toe or settled in the riverbed after having been removed due to erosion. The results showed interesting comprehension about the characterization of riverbank erosion and sediment transport along the river. These insights can be used for calibration and validation of new and existing numerical models.
ISSN:2073-4441
2073-4441
DOI:10.3390/w11030529