From the headwater to the delta: A synthesis of the basin-scale sediment load regime in the Changjiang River

Many large rivers in the world delivers decreasing sediment loads to coastal oceans owing to reductions in sediment yield and disrupted sediment deliver. Understanding the sediment load regime is a prerequisite of sediment management and fluvial and deltaic ecosystem restoration. This work examines...

Full description

Saved in:
Bibliographic Details
Published inEarth-science reviews Vol. 197; p. 102900
Main Authors Guo, Leicheng, Su, Ni, Townend, Ian, Wang, Zheng Bing, Zhu, Chunyan, Wang, Xianye, Zhang, Yuning, He, Qing
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.10.2019
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Many large rivers in the world delivers decreasing sediment loads to coastal oceans owing to reductions in sediment yield and disrupted sediment deliver. Understanding the sediment load regime is a prerequisite of sediment management and fluvial and deltaic ecosystem restoration. This work examines sediment load changes across the Changjiang River basin based on a long time series (1950–2017) of sediment load data stretching from the headwater to the delta. We find that the sediment loads have decreased progressively throughout the basin at multiple time scales. The sediment loads have decreased by ~96% and ~74% at the outlets of the upper basin and entire basin, respectively, in 2006–2017 compared to 1950–1985. The hydropower dams in the mainstem have become a dominant cause of the reduction, although downstream channel erosion causes moderate sediment load recovery. The basin-scale sediment connectivity has declined as the upper river is progressively dammed, the middle-lower river is leveed and river-lake interplay weakens. The middle-lower river has changed from a slight depositional to a severe erosional environment, from a sediment transport conduit to a new sediment source zone, and from a transport-limited to a supply-limited condition. These low-level sediment loads will likely persist in the future considering the cumulative dam trapping and depleted channel erosion. As a result, substantial hydro-morphological changes have occurred that affect the water supply, flood mitigation, and the aquatic ecosystem. The findings and lessons in this work can shed light on other large river systems subject to intensified human interference. •We provide a comprehensive synthesis of basin-scale behavior of sediment load regime in the Changjiang River.•Sediment loads have declined to insignificant quantities at majority of gauges.•Dramatic sediment connectivity and source-to-sink changes are identified.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0012-8252
1872-6828
DOI:10.1016/j.earscirev.2019.102900