High Absorption and Second-Harmonic Generation in Split Ring Resonator Multilayer Nanostructure

Second-harmonic generation in split ring resonator multilayer nanostructure is studied with the finite-difference time-domain (FDTD) method. The fundamental frequency wave and the second-harmonic generation at the resonant absorption wavelength are highly localized in the dielectric layer, and the a...

Full description

Saved in:
Bibliographic Details
Published inJournal of nanomaterials Vol. 2014; no. 2014; pp. 1 - 7
Main Authors Zhan, Jie, Wu, Lingxi, Xie, Suxia, Liu, Qiong, Deng, Hui, Wu, Mengxiong, Zhou, Renlong, Nie, Guozheng
Format Journal Article
LanguageEnglish
Published Cairo, Egypt Hindawi Publishing Corporation 01.01.2014
Hindawi Limited
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Second-harmonic generation in split ring resonator multilayer nanostructure is studied with the finite-difference time-domain (FDTD) method. The fundamental frequency wave and the second-harmonic generation at the resonant absorption wavelength are highly localized in the dielectric layer, and the absorption peak is sensitive to dielectric constant of the dielectric layer. Under the excitation of the plasmon resonances mode, the strong local field induces an expected increase of the second-harmonic generation with conversion efficiencies 10−6-10−7. The distributions of fundamental frequency electric field and second-harmonic electric field inside the central dielectric layer region are also shown.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1687-4110
1687-4129
DOI:10.1155/2014/150957