Enhanced Mechanical and Thermal Strength in Mixed-Enantiomers-Based Supramolecular Gel

Mixing supramolecular gels based on enantiomers leads to re-arrangement of gel fibers at the molecular level, which results in more favorable packing and tunable properties. Bis­(urea) compounds tagged with a phenylalanine methyl ester in racemic and enantiopure forms were synthesized. Both enantiop...

Full description

Saved in:
Bibliographic Details
Published inLangmuir Vol. 34; no. 43; pp. 12957 - 12967
Main Authors Tómasson, Daníel Arnar, Ghosh, Dipankar, Kržišnik, Zala, Fasolin, Luiz Henrique, Vicente, António A, Martin, Adam D, Thordarson, Pall, Damodaran, Krishna K
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 30.10.2018
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Mixing supramolecular gels based on enantiomers leads to re-arrangement of gel fibers at the molecular level, which results in more favorable packing and tunable properties. Bis­(urea) compounds tagged with a phenylalanine methyl ester in racemic and enantiopure forms were synthesized. Both enantiopure and racemate compounds formed gels in a wide range of solvents and the racemate (1-rac) formed a stronger gel network compared with the enantiomers. The gel (1R+1S) obtained by mixing equimolar amount of enantiomers (1R and 1S) showed enhanced mechanical and thermal stability compared to enantiomers and racemate gels. The preservation of chirality in these compounds was analyzed by circular dichroism and optical rotation measurements. Analysis of the scanning electron microscopy (SEM) and atomic force microscopy (AFM) images revealed that the network in the mixed gel is a combination of enantiomers and racemate fibers, which was further supported by solid-state NMR. The analysis of the packing in xerogels by solid-state NMR spectra and the existence of twisted-tape morphology in SEM and AFM images confirmed the presence of both self-sorted and co-assembled fibers in mixed gel. The enhanced thermal and mechanical strength may be attributed to the enhanced intermolecular forces between the racemate and the enantiomer and the combination of both self-sorted and co-assembled enantiomers in the mixed gel.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0743-7463
1520-5827
DOI:10.1021/acs.langmuir.8b02729