A Look Inside: Oral Sampling for Detection of Non-oral Infectious Diseases

Efforts to control transmissible infectious diseases rely on the ability to screen large populations, ideally in community settings. These efforts can be limited by the requirement for invasive or logistically difficult collection of patient samples, such as blood, urine, stool, sputum, and nasophar...

Full description

Saved in:
Bibliographic Details
Published inJournal of clinical microbiology Vol. 59; no. 10; p. e0236020
Main Authors Valinetz, Ethan D, Cangelosi, Gerard A
Format Journal Article
LanguageEnglish
Published United States American Society for Microbiology 20.09.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Efforts to control transmissible infectious diseases rely on the ability to screen large populations, ideally in community settings. These efforts can be limited by the requirement for invasive or logistically difficult collection of patient samples, such as blood, urine, stool, sputum, and nasopharyngeal swabs. Oral sampling is an appealing, noninvasive alternative that could greatly facilitate high-throughput sampling in community settings. Oral sampling has been described for the detection of dozens of human pathogens, including pathogens whose primary sites of infection are outside of the oral cavity, such as the respiratory pathogens Mycobacterium tuberculosis and SARS-CoV-2. Oral sampling can demonstrate active infections as well as resolving or previous infections, the latter through the detection of antibodies. Its potential applications are diverse, including improved diagnosis in special populations (e.g., children), population surveillance, and infectious disease screening. In this minireview, we address the use of oral samples for the detection of diseases that primarily manifest outside the oral cavity. Focusing on well-supported examples, we describe applications for such methods and highlight their potential advantages and limitations in medicine, public health, and research.
AbstractList Efforts to control transmissible infectious diseases rely on the ability to screen large populations, ideally in community settings. These efforts can be limited by the requirement for invasive or logistically difficult collection of patient samples, such as blood, urine, stool, sputum, and nasopharyngeal swabs. Oral sampling is an appealing, noninvasive alternative that could greatly facilitate high-throughput sampling in community settings. Oral sampling has been described for the detection of dozens of human pathogens, including pathogens whose primary sites of infection are outside of the oral cavity, such as the respiratory pathogens Mycobacterium tuberculosis and SARS-CoV-2. Oral sampling can demonstrate active infections as well as resolving or previous infections, the latter through the detection of antibodies. Its potential applications are diverse, including improved diagnosis in special populations (e.g., children), population surveillance, and infectious disease screening. In this minireview, we address the use of oral samples for the detection of diseases that primarily manifest outside the oral cavity. Focusing on well-supported examples, we describe applications for such methods and highlight their potential advantages and limitations in medicine, public health, and research.
Efforts to control transmissible infectious diseases rely on the ability to screen large populations, ideally in community settings. These efforts can be limited by the requirement for invasive or logistically difficult collection of patient samples, such as blood, urine, stool, sputum, and nasopharyngeal swabs. Efforts to control transmissible infectious diseases rely on the ability to screen large populations, ideally in community settings. These efforts can be limited by the requirement for invasive or logistically difficult collection of patient samples, such as blood, urine, stool, sputum, and nasopharyngeal swabs. Oral sampling is an appealing, noninvasive alternative that could greatly facilitate high-throughput sampling in community settings. Oral sampling has been described for the detection of dozens of human pathogens, including pathogens whose primary sites of infection are outside of the oral cavity, such as the respiratory pathogens Mycobacterium tuberculosis and SARS-CoV-2. Oral sampling can demonstrate active infections as well as resolving or previous infections, the latter through the detection of antibodies. Its potential applications are diverse, including improved diagnosis in special populations (e.g., children), population surveillance, and infectious disease screening. In this minireview, we address the use of oral samples for the detection of diseases that primarily manifest outside the oral cavity. Focusing on well-supported examples, we describe applications for such methods and highlight their potential advantages and limitations in medicine, public health, and research.
Efforts to control transmissible infectious diseases rely on the ability to screen large populations, ideally in community settings. These efforts can be limited by the requirement for invasive or logistically difficult collection of patient samples, such as blood, urine, stool, sputum, and nasopharyngeal swabs. Oral sampling is an appealing, noninvasive alternative that could greatly facilitate high-throughput sampling in community settings. Oral sampling has been described for the detection of dozens of human pathogens, including pathogens whose primary sites of infection are outside of the oral cavity, such as the respiratory pathogens Mycobacterium tuberculosis and SARS-CoV-2. Oral sampling can demonstrate active infections as well as resolving or previous infections, the latter through the detection of antibodies. Its potential applications are diverse, including improved diagnosis in special populations (e.g., children), population surveillance, and infectious disease screening. In this minireview, we address the use of oral samples for the detection of diseases that primarily manifest outside the oral cavity. Focusing on well-supported examples, we describe applications for such methods and highlight their potential advantages and limitations in medicine, public health, and research.
Author Cangelosi, Gerard A
Valinetz, Ethan D
Author_xml – sequence: 1
  givenname: Ethan D
  surname: Valinetz
  fullname: Valinetz, Ethan D
  organization: Department of Medicine, University of Washington, Seattle, Washington, USA
– sequence: 2
  givenname: Gerard A
  orcidid: 0000-0003-0006-6520
  surname: Cangelosi
  fullname: Cangelosi, Gerard A
  organization: Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33888590$$D View this record in MEDLINE/PubMed
BookMark eNp1kElPwzAQhS1URBe4cUa-IpEyXpI4HJCqlqVVoQdA4mY5iV1SGruKUyT-PWkLFRw4jWbmzac3r4ta1lmN0CmBPiFUXE6GD32gLIKAwgHqEEhEEEXw2kIdgCQMCGFxG3W9XwAQzsPwCLUZE0KECXTQZICnzr3jsfVFrq_wrFJL_KTK1bKwc2xchUe61lldOIudwY_OBm4jGVuzna49HhVeK6_9MTo0aun1yXftoZfbm-fhfTCd3Y2Hg2mgOBF1kOgoZykRaaoFj7M44TpuGi4aUyllIuMqZwJSRg03uebGxASiKAlp3kxIxnroesddrdNS55m2deNIrqqiVNWndKqQfze2eJNz9yEFDwkn0AAudoCsct5X2uxvCchNprLJVG4zlXQjP9_JlS-pXLh1ZZv3_tOe_fa2B_8Ezr4AttOAhA
CitedBy_id crossref_primary_10_1016_j_diagmicrobio_2024_116404
crossref_primary_10_1080_14737159_2022_2018302
crossref_primary_10_1371_journal_pgph_0001430
crossref_primary_10_21518_2079_701X_2022_16_19_139_145
crossref_primary_10_3389_fmed_2023_1278716
crossref_primary_10_3389_fmicb_2022_1040093
crossref_primary_10_1093_cid_ciae041
crossref_primary_10_1128_jcm_00019_24
crossref_primary_10_1128_jcm_00431_22
crossref_primary_10_1039_D3SD00317E
crossref_primary_10_1128_jcm_00421_22
crossref_primary_10_1016_j_vetpar_2024_110173
crossref_primary_10_1016_S2214_109X_23_00469_2
Cites_doi 10.1128/JCM.01743-13
10.1097/INF.0000000000002828
10.1128/JCM.01946-20
10.1016/j.jmoldx.2020.10.018
10.1128/JCM.00776-20
10.1038/s41598-019-47302-5
10.1126/scitranslmed.aan4479
10.1017/ice.2021.2
10.1128/JCM.01287-19
10.1093/cid/ciaa1388
10.1016/j.jviromet.2016.04.014
10.1086/383322
10.1128/JCM.01438-20
10.3389/fmed.2020.580796
10.2147/IDR.S275152
10.1038/s41368-020-0074-x
10.1016/S1473-3099(20)30196-1
10.1128/JCM.02881-20
10.4103/ijmr.IJMR_2987_20
10.1016/j.jinf.2020.04.005
10.1097/QAI.0000000000002146
10.1086/503836
10.1021/acsinfecdis.7b00088
10.1093/infdis/jiw296
10.1128/JCM.01704-16
10.1016/j.jinf.2020.12.007
10.1016/j.jcv.2019.05.008
10.1093/cid/ciaa149
10.2139/srrn.3781639
10.1093/cid/ciaa1589
10.1186/s13104-019-4385-y
10.1186/s12985-020-1293-7
10.1128/JCM.01824-20
10.1016/S1473-3099(11)70368-1
10.3389/fmed.2020.00465
10.1056/NEJMc2016321
10.1016/j.jctube.2020.100148
10.1371/journal.pone.0241542
10.3201/eid2610.202449
10.1186/s12879-017-2773-2
10.2147/IDR.S284157
10.1093/jpids/piaa068
10.1128/JCM.43.11.5721-5732.2005
10.1128/JCM.01847-18
10.1186/1475-2875-11-175
10.3390/jcm9124124
10.1128/JCM.02204-20
10.1016/j.mycmed.2019.04.001
ContentType Journal Article
Copyright Copyright © 2021 American Society for Microbiology.
Copyright © 2021 American Society for Microbiology. 2021 American Society for Microbiology
Copyright_xml – notice: Copyright © 2021 American Society for Microbiology.
– notice: Copyright © 2021 American Society for Microbiology. 2021 American Society for Microbiology
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
5PM
DOI 10.1128/JCM.02360-20
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
DatabaseTitleList MEDLINE
CrossRef


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1098-660X
Editor McAdam, Alexander J
Editor_xml – sequence: 1
  givenname: Alexander J
  surname: McAdam
  fullname: McAdam, Alexander J
– sequence: 1
  givenname: Alexander J.
  surname: McAdam
  fullname: McAdam, Alexander J.
ExternalDocumentID 10_1128_JCM_02360_20
02360-20
33888590
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIAID NIH HHS
  sequence: 0
  grantid: T32 AI007044
– fundername: NIAID NIH HHS
  sequence: 0
  grantid: R01 AI139254
– fundername: NIBIB NIH HHS
  sequence: 0
  grantid: U54 EB027049
– fundername: HHS | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
  grantid: R01 AI139254
  funderid: https://doi.org/10.13039/100000060
– fundername: Bill and Melinda Gates Foundation (BMGF)
  grantid: INV-004527
  funderid: https://doi.org/10.13039/100000865
– fundername: HHS | NIH | National Institute of Biomedical Imaging and Bioengineering (NIBIB)
  grantid: U54EB027049
  funderid: https://doi.org/10.13039/100000070
– fundername: HHS | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
  grantid: T32AI007044
  funderid: https://doi.org/10.13039/100000060
– fundername: ;
  grantid: INV-004527
– fundername: ;
  grantid: T32AI007044
– fundername: ;
  grantid: R01 AI139254
– fundername: ;
  grantid: U54EB027049
GroupedDBID ---
.55
0R~
18M
29K
2WC
39C
4.4
53G
5GY
5RE
5VS
ABOCM
ABPPZ
ACGFO
ADBBV
AENEX
AGVNZ
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
CGR
CS3
CUY
CVF
D-I
DIK
DU5
E3Z
EBS
ECM
EIF
F5P
FRP
GX1
H13
HYE
HZ~
KQ8
L7B
NPM
O9-
OK1
P2P
P6G
RHF
RHI
RNS
RPM
RSF
TR2
UCJ
W8F
WOQ
X7M
ZCA
~KM
-
0R
55
ABFLS
ADACO
BXI
HZ
KM
ZA5
AAYXX
CITATION
5PM
ID FETCH-LOGICAL-a418t-9e6d3b18bbe847c794e78bb48338b238c4ad380b32f4fde4ff71066952d2f41c3
IEDL.DBID RPM
ISSN 0095-1137
IngestDate Tue Sep 17 21:06:49 EDT 2024
Fri Dec 06 00:49:24 EST 2024
Tue Dec 28 13:58:58 EST 2021
Sun Dec 08 01:35:05 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords screening
swabs
tuberculosis
diagnosis
malaria
parvovirus
COVID-19
saliva
SARS-CoV-2
HIV
Mycobacterium tuberculosis
pediatric infectious disease
respiratory disease
hepatitis C virus
human immunodeficiency virus
HCV
Pneumocystis
respiratory diseases
Ebola
Language English
License All Rights Reserved. This article is made available via the PMC Open Access Subset for unrestricted noncommercial re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic. https://doi.org/10.1128/ASMCopyrightv2
All Rights Reserved.
This article is made available via the PMC Open Access Subset for unrestricted noncommercial re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a418t-9e6d3b18bbe847c794e78bb48338b238c4ad380b32f4fde4ff71066952d2f41c3
Notes Citation Valinetz ED, Cangelosi GA, 2021. A look inside: oral sampling for detection of non-oral infectious diseases. J Clin Microbiol 59:e02360-20. https://doi.org/10.1128/JCM.02360-20.
ORCID 0000-0003-0006-6520
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8451410/
PMID 33888590
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8451410
crossref_primary_10_1128_JCM_02360_20
asm2_journals_10_1128_JCM_02360_20
pubmed_primary_33888590
PublicationCentury 2000
PublicationDate 20210920
PublicationDateYYYYMMDD 2021-09-20
PublicationDate_xml – month: 9
  year: 2021
  text: 20210920
  day: 20
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: 1752 N St., N.W., Washington, DC
PublicationTitle Journal of clinical microbiology
PublicationTitleAbbrev J Clin Microbiol
PublicationTitleAlternate J Clin Microbiol
PublicationYear 2021
Publisher American Society for Microbiology
Publisher_xml – name: American Society for Microbiology
References Aas, JA, Paster, BJ, Stokes, LN, Olsen, I, Dewhirst, FE (B3) 2005; 43
Zhong, M, Lin, B, Pathak, JL, Gao, H, Young, AJ, Wang, X, Liu, C, Wu, K, Liu, M, Chen, J-m, Huang, J, Lee, L-H, Qi, C-l, Ge, L, Wang, L (B25) 2020; 7
Dziva Chikwari, C, Njuguna, IN, Neary, J, Rainer, C, Chihota, B, Slyker, JA, Katz, DA, Wamalwa, DC, Oyiengo, L, Bandason, T, McHugh, G, Dauya, E, Mujuru, H, Stewart, KA, John-Stewart, GC, Ferrand, RA, Wagner, AD (B10) 2019; 82
Molina-Moya, B, Ciobanu, N, Hernandez, M, Prat-Aymerich, C, Crudu, V, Adams, ER, Codreanu, A, Sloan, DJ, Cuevas, LE, Dominguez, J (B22) 2020; 9
Kojima, N, Turner, F, Slepnev, V, Bacelar, A, Deming, L, Kodeboyina, S, Klausner, JD (B31) 2020
Ahmed, WM, Lawal, O, Nijsen, TM, Goodacre, R, Fowler, SJ (B2) 2017; 3
Deviaene, M, Weigel, KM, Wood, RC, Luabeya, AKK, Jones-Engel, L, Hatherill, M, Cangelosi, GA (B32) 2020; 15
Nicol, MP, Wood, RC, Workman, L, Prins, M, Whitman, C, Ghebrekristos, Y, Mbhele, S, Olson, A, Jones-Engel, LE, Zar, HJ, Cangelosi, GA (B35) 2019; 9
Tang, W, Chen, W, Amini, A, Boeras, D, Falconer, J, Kelly, H, Peeling, R, Varsaneux, O, Tucker, JD, Easterbrook, P (B9) 2017; 17
Agulló, V, Fernández-González, M, Ortiz de la Tabla, V, Gonzalo-Jiménez, N, García, JA, Masiá, M, Gutiérrez, F (B29) 2020; 82
Lee, RA, Herigon, JC, Benedetti, A, Pollock, NR, Denkinger, CM (B33) 2021; 59
Bodewes, R, Kerkhof, J, Cremer, J, Gijselaar, DB, Voordouw, BCG, Veldhuijzen, IK, Schipper, M, van Binnendijk, R (B36) 2019; 117
Shenai, S, Amisano, D, Ronacher, K, Kriel, M, Banada, PP, Song, T, Lee, M, Joh, JS, Winter, J, Thayer, R, Via, LE, Kim, S, Barry, CE, Walzl, G, Alland, D (B20) 2013; 51
Goterris, L, Mancebo Fernández, MA, Aguilar-Company, J, Falcó, V, Ruiz-Camps, I, Martín-Gómez, MT (B16) 2019; 57
Larsen, HH, Huang, L, Kovacs, JA, Crothers, K, Silcott, VA, Morris, A, Turner, JR, Beard, CB, Masur, H, Fischer, SH (B17) 2004; 189
Formenty, P, Leroy, EM, Epelboin, A, Libama, F, Lenzi, M, Sudeck, H, Yaba, P, Allarangar, Y, Boumandouki, P, Nkounkou, VB, Drosten, C, Grolla, A, Feldmann, H, Roth, C (B42) 2006; 42
Hanson, KE, Barker, AP, Hillyard, DR, Gilmore, N, Barrett, JW, Orlandi, RR, Shakir, SM (B13) 2020; 58
Pisanic, N, Randad, PR, Kruczynski, K, Manabe, YC, Thomas, DL, Pekosz, A, Klein, SL, Betenbaugh, MJ, Clarke, WA, Laeyendecker, O, Caturegli, PP, Larman, HB, Detrick, B, Fairley, JK, Sherman, AC, Rouphael, N, Edupuganti, S, Granger, DA, Granger, SW, Collins, MH, Heaney, CD (B46) 2020; 59
Flores, JA, Calderón, R, Mesman, AW, Soto, M, Coit, J, Aliaga, J, Mendoza, M, Leon, SR, Konda, K, Mestanza, FM, Mendoza, CJ, Lecca, L, Murray, MB, Holmberg, RC, Pollock, NR, Franke, MF (B6) 2020; 39
Senok, A, Alsuwaidi, H, Atrah, Y, Al Ayedi, O, Al Zahid, J, Han, A, Al Marzooqi, A, Al Heialy, S, Altrabulsi, B, AbdelWareth, L, Idaghdour, Y, Ali, R, Loney, T, Alsheikh-Ali, A (B45) 2020; 13
Williams, E, Bond, K, Zhang, B, Putland, M, Williamson, DA (B27) 2020; 58
Mesman, AW, Calderon, R, Soto, M, Coit, J, Aliaga, J, Mendoza, M, Franke, MF (B21) 2019; 12
Nagura-Ikeda, M, Imai, K, Tabata, S, Miyoshi, K, Murahara, N, Mizuno, T, Horiuchi, M, Kato, K, Imoto, Y, Iwata, M, Mimura, S, Ito, T, Tamura, K, Kato, Y (B28) 2020; 58
Tao, D, McGill, B, Hamerly, T, Kobayashi, T, Khare, P, Dziedzic, A, Leski, T, Holtz, A, Shull, B, Jedlicka, AE, Walzer, A, Slowey, PD, Slowey, CC, Nsango, SE, Stenger, DA, Chaponda, M, Mulenga, M, Jacobsen, KH, Sullivan, DJ, Ryan, SJ, Ansumana, R, Moss, WJ, Morlais, I, Dinglasan, RR (B41) 2019; 11
Song, Y, Ma, Y, Liu, R, Shang, Y, Ma, L, Huo, F, Li, Y, Shu, W, Wang, Y, Gao, M, Pang, Y (B23) 2021; Volume 14
Tu, Y-P, Jennings, R, Hart, B, Cangelosi, GA, Wood, RC, Wehber, K, Verma, P, Vojta, D, Berke, EM (B4) 2020; 383
Liu, L, Zhang, M, Hang, L, Kong, F, Yan, H, Zhang, Y, Feng, X, Gao, Y, Wang, C, Ma, H, Liu, X, Zhan, M, Pan, Y, Xu, H, Niu, J (B48) 2020; 17
Yokota, I, Shane, PY, Okada, K, Unoki, Y, Yang, Y, Inao, T, Sakamaki, K, Iwasaki, S, Hayasaka, K, Sugita, J, Nishida, M, Fujisawa, S, Teshima, T (B44) 2020
Han, MS, Seong, MW, Kim, N, Shin, S, Cho, SI, Park, H, Kim, TS, Park, SS, Choi, EH (B37) 2020; 26
To, KK, Tsang, OT, Leung, WS, Tam, AR, Wu, TC, Lung, DC, Yip, CC, Cai, JP, Chan, JM, Chik, TS, Lau, DP, Choi, CY, Chen, LL, Chan, WM, Chan, KH, Ip, JD, Ng, AC, Poon, RW, Luo, CT, Cheng, VC, Chan, JF, Hung, IF, Chen, Z, Chen, H, Yuen, KY (B30) 2020; 20
To, KK, Tsang, OT, Yip, CC, Chan, KH, Wu, TC, Chan, JM, Leung, WS, Chik, TS, Choi, CY, Kandamby, DH, Lung, DC, Tam, AR, Poon, RW, Fung, AY, Hung, IF, Cheng, VC, Chan, JF, Yuen, KY (B15) 2020; 71
Fung, AO, Damoiseaux, R, Grundeen, S, Panes, JL, Horton, DH, Judy, JW, Moore, TB (B40) 2012; 11
Fraczek, MG, Ahmad, S, Richardson, M, Kirwan, M, Bowyer, P, Denning, DW, Rautemaa, R (B39) 2019; 29
Azzi, L, Carcano, G, Gianfagna, F, Grossi, P, Gasperina, DD, Genoni, A, Fasano, M, Sessa, F, Tettamanti, L, Carinci, F, Maurino, V, Rossi, A, Tagliabue, A, Baj, A (B11) 2020; 81
Beelaert, G, Van Heddegem, L, Van Frankenhuijsen, M, Vandewalle, G, Compernolle, V, Florence, E, Fransen, K (B7) 2016; 234
Lima, F, Santos, AS, Oliveira, RD, Silva, CCR, Gonçalves, CCM, Andrews, JR, Croda, J (B47) 2020; 19
Luabeya, AK, Wood, RC, Shenje, J, Filander, E, Ontong, C, Mabwe, S, Africa, H, Nguyen, FK, Olson, A, Weigel, KM, Jones-Engel, L, Hatherill, M, Cangelosi, GA (B5) 2018; 57
Kim, YG, Yun, SG, Kim, MY, Park, K, Cho, CH, Yoon, SY, Nam, MH, Lee, CK, Cho, YJ, Lim, CS (B1) 2017; 55
Babady, NE, McMillen, T, Jani, K, Viale, A, Robilotti, EV, Aslam, A, Diver, M, Sokoli, D, Mason, G, Shah, MK, Korenstein, D, Kamboj, M (B19) 2020; 23
Kandel, CE, Young, M, Serbanescu, MA, Powis, JE, Bulir, D, Callahan, J, Katz, K, McCready, J, Racher, H, Sheldrake, E, Quon, D, Vojdani, OK, McGeer, A, Goneau, LW, Vermeiren, C (B34) 2021
Czumbel, LM, Kiss, S, Farkas, N, Mandel, I, Hegyi, A, Nagy, Á, Lohinai, Z, Szakács, Z, Hegyi, P, Steward, MC, Varga, G (B12) 2020; 7
Kang, YA, Koo, B, Kim, O-H, Park, JH, Kim, HC, Lee, HJ, Kim, MG, Jang, Y, Koo, YS, Shin, Y, Lee, SW, Kim, S-H (B24) 2021
Kam, KQ, Yung, CF, Maiwald, M, Chong, CY, Soong, HY, Loo, LH, Tan, NWH, Li, J, Nadua, KD, Thoon, KC (B38) 2020; 9
Procop, GW, Shrestha, NK, Vogel, S, Van Sickle, K, Harrington, S, Rhoads, DD, Rubin, BP, Terpeluk, P (B14) 2020; 58
Erickson, BR, Sealy, TK, Flietstra, T, Morgan, L, Kargbo, B, Matt-Lebby, VE, Gibbons, A, Chakrabarti, AK, Graziano, J, Presser, L, Flint, M, Bird, BH, Brown, S, Klena, JD, Blau, DM, Brault, AC, Belser, JA, Salzer, JS, Schuh, AJ, Lo, M, Zivcec, M, Priestley, RA, Pyle, M, Goodman, C, Bearden, S, Amman, BR, Basile, A, Bergeron, É, Bowen, MD, Dodd, KA, Freeman, MM, McMullan, LK, Paddock, CD, Russell, BJ, Sanchez, AJ, Towner, JS, Wang, D, Zemtsova, GE, Stoddard, RA, Turnsek, M, Guerrero, LW, Emery, SL, Stovall, J, Kainulainen, MH, Perniciaro, JL, Mijatovic-Rustempasic, S, Shakirova, G, Winter, J, Sexton, C, Liu, F (B43) 2016; 214
Xu, H, Zhong, L, Deng, J, Peng, J, Dan, H, Zeng, X, Li, T, Chen, Q (B26) 2020; 12
Mittal, A, Gupta, A, Kumar, S, Surjit, M, Singh, B, Soneja, M, Soni, KD, Khan, AR, Singh, K, Naik, S, Kumar, A, Aggarwal, R, Nischal, N, Sinha, S, Trikha, A, Wig, N (B18) 2020; 152
Pant Pai, N, Balram, B, Shivkumar, S, Martinez-Cajas, JL, Claessens, C, Lambert, G, Peeling, RW, Joseph, L (B8) 2012; 12
e_1_3_2_26_2
e_1_3_2_49_2
e_1_3_2_27_2
e_1_3_2_48_2
e_1_3_2_28_2
e_1_3_2_29_2
e_1_3_2_41_2
e_1_3_2_40_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_22_2
e_1_3_2_45_2
e_1_3_2_23_2
e_1_3_2_44_2
e_1_3_2_24_2
e_1_3_2_47_2
e_1_3_2_25_2
e_1_3_2_46_2
e_1_3_2_9_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_32_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_5_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_4_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_3_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_2_2
e_1_3_2_14_2
e_1_3_2_35_2
References_xml – volume: 51
  start-page: 4161
  year: 2013
  end-page: 4166
  ident: B20
  article-title: Exploring alternative biomaterials for diagnosis of pulmonary tuberculosis in HIV-negative patients by use of the GeneXpert MTB/RIF assay
  publication-title: J Clin Microbiol
  doi: 10.1128/JCM.01743-13
  contributor:
    fullname: Alland, D
– volume: 39
  start-page: e376
  year: 2020
  end-page: e380
  ident: B6
  article-title: Detection of Mycobacterium Tuberculosis DNA in buccal swab samples from children in Lima, Peru
  publication-title: Pediatr Infect Dis J
  doi: 10.1097/INF.0000000000002828
  contributor:
    fullname: Franke, MF
– volume: 58
  year: 2020
  ident: B14
  article-title: A direct comparison of enhanced saliva to nasopharyngeal swab for the detection of SARS-CoV-2 in symptomatic patients
  publication-title: J Clin Microbiol
  doi: 10.1128/JCM.01946-20
  contributor:
    fullname: Terpeluk, P
– volume: 23
  start-page: 3
  year: 2020
  end-page: 9
  ident: B19
  article-title: Performance of severe acute respiratory syndrome coronavirus 2 real-time RT-PCR tests on oral rinses and saliva samples
  publication-title: J Mol Diagn
  doi: 10.1016/j.jmoldx.2020.10.018
  contributor:
    fullname: Kamboj, M
– volume: 58
  year: 2020
  ident: B27
  article-title: Saliva as a noninvasive specimen for detection of SARS-CoV-2
  publication-title: J Clin Microbiol
  doi: 10.1128/JCM.00776-20
  contributor:
    fullname: Williamson, DA
– volume: 9
  start-page: 10789
  year: 2019
  ident: B35
  article-title: Microbiological diagnosis of pulmonary tuberculosis in children by oral swab polymerase chain reaction
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-47302-5
  contributor:
    fullname: Cangelosi, GA
– volume: 11
  year: 2019
  ident: B41
  article-title: A saliva-based rapid test to quantify the infectious subclinical malaria parasite reservoir
  publication-title: Sci Transl Med
  doi: 10.1126/scitranslmed.aan4479
  contributor:
    fullname: Dinglasan, RR
– start-page: 1
  year: 2021
  end-page: 5
  ident: B34
  article-title: Detection of severe acute respiratory coronavirus virus 2 (SARS-CoV-2) in outpatients: a multicenter comparison of self-collected saline gargle, oral swab, and combined oral-anterior nasal swab to a provider collected nasopharyngeal swab
  publication-title: Infect Control Hosp Epidemiol
  doi: 10.1017/ice.2021.2
  contributor:
    fullname: Vermeiren, C
– volume: 57
  year: 2019
  ident: B16
  article-title: Molecular diagnosis of Pneumocystis jirovecii pneumonia by use of oral wash samples in immunocompromised patients: usefulness and importance of the DNA target
  publication-title: J Clin Microbiol
  doi: 10.1128/JCM.01287-19
  contributor:
    fullname: Martín-Gómez, MT
– start-page: ciaa1388
  year: 2020
  ident: B44
  article-title: Mass screening of asymptomatic persons for SARS-CoV-2 using saliva
  publication-title: Clin Infect Dis
  doi: 10.1093/cid/ciaa1388
  contributor:
    fullname: Teshima, T
– volume: 234
  start-page: 164
  year: 2016
  end-page: 168
  ident: B7
  article-title: Evaluation of the intercept oral specimen collection device with HIV assays versus paired serum/plasma specimens
  publication-title: J Virol Methods
  doi: 10.1016/j.jviromet.2016.04.014
  contributor:
    fullname: Fransen, K
– volume: 189
  start-page: 1679
  year: 2004
  end-page: 1683
  ident: B17
  article-title: A prospective, blinded study of quantitative touch-down polymerase chain reaction using oral-wash samples for diagnosis of Pneumocystis pneumonia in HIV-infected patients
  publication-title: J Infect Dis
  doi: 10.1086/383322
  contributor:
    fullname: Fischer, SH
– volume: 58
  year: 2020
  ident: B28
  article-title: Clinical evaluation of self-collected saliva by quantitative reverse transcription-PCR (RT-qPCR), direct RT-qPCR, reverse transcription-loop-mediated isothermal amplification, and a rapid antigen test to diagnose COVID-19
  publication-title: J Clin Microbiol
  doi: 10.1128/JCM.01438-20
  contributor:
    fullname: Kato, Y
– volume: 7
  start-page: 580796
  year: 2020
  ident: B25
  article-title: ACE2 and furin expressions in oral epithelial cells possibly facilitate COVID-19 infection via respiratory and fecal-oral routes
  publication-title: Front Med (Lausanne)
  doi: 10.3389/fmed.2020.580796
  contributor:
    fullname: Wang, L
– volume: 13
  start-page: 3393
  year: 2020
  end-page: 3399
  ident: B45
  article-title: Saliva as an alternative specimen for molecular COVID-19 testing in community settings and population-based screening
  publication-title: Infect Drug Resist
  doi: 10.2147/IDR.S275152
  contributor:
    fullname: Alsheikh-Ali, A
– volume: 12
  start-page: 8
  year: 2020
  ident: B26
  article-title: High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa
  publication-title: Int J Oral Sci
  doi: 10.1038/s41368-020-0074-x
  contributor:
    fullname: Chen, Q
– volume: 20
  start-page: 565
  year: 2020
  end-page: 574
  ident: B30
  article-title: Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: an observational cohort study
  publication-title: Lancet Infect Dis
  doi: 10.1016/S1473-3099(20)30196-1
  contributor:
    fullname: Yuen, KY
– volume: 59
  year: 2021
  ident: B33
  article-title: Performance of saliva, oropharyngeal swabs, and nasal swabs for SARS-CoV-2 molecular detection: a systematic review and meta-analysis
  publication-title: J Clin Microbiol
  doi: 10.1128/JCM.02881-20
  contributor:
    fullname: Denkinger, CM
– volume: 152
  start-page: 77
  year: 2020
  end-page: 81
  ident: B18
  article-title: Gargle lavage as a viable alternative to swab for detection of SARS-CoV-2
  publication-title: Indian J Med Res
  doi: 10.4103/ijmr.IJMR_2987_20
  contributor:
    fullname: Wig, N
– volume: 81
  start-page: e45
  year: 2020
  end-page: e50
  ident: B11
  article-title: Saliva is a reliable tool to detect SARS-CoV-2
  publication-title: J Infect
  doi: 10.1016/j.jinf.2020.04.005
  contributor:
    fullname: Baj, A
– volume: 82
  start-page: 368
  year: 2019
  end-page: 372
  ident: B10
  article-title: Brief report: diagnostic accuracy of oral mucosal transudate tests compared with blood-based rapid tests for HIV among children aged 18 months to 18 years in Kenya and Zimbabwe
  publication-title: J Acquir Immune Defic Syndr
  doi: 10.1097/QAI.0000000000002146
  contributor:
    fullname: Wagner, AD
– volume: 42
  start-page: 1521
  year: 2006
  end-page: 1526
  ident: B42
  article-title: Detection of Ebola virus in oral fluid specimens during outbreaks of Ebola virus hemorrhagic fever in the Republic of Congo
  publication-title: Clin Infect Dis
  doi: 10.1086/503836
  contributor:
    fullname: Roth, C
– volume: 3
  start-page: 695
  year: 2017
  end-page: 710
  ident: B2
  article-title: Exhaled volatile organic compounds of infection: a systematic review
  publication-title: ACS Infect Dis
  doi: 10.1021/acsinfecdis.7b00088
  contributor:
    fullname: Fowler, SJ
– volume: 214
  start-page: S258
  year: 2016
  end-page: S262
  ident: B43
  article-title: Ebola virus disease diagnostics, Sierra Leone: analysis of real-time reverse transcription-polymerase chain reaction values for clinical blood and oral swab specimens
  publication-title: J Infect Dis
  doi: 10.1093/infdis/jiw296
  contributor:
    fullname: Liu, F
– volume: 55
  start-page: 226
  year: 2017
  end-page: 233
  ident: B1
  article-title: Comparison between saliva and nasopharyngeal swab specimens for detection of respiratory viruses by multiplex reverse transcription-PCR
  publication-title: J Clin Microbiol
  doi: 10.1128/JCM.01704-16
  contributor:
    fullname: Lim, CS
– volume: 82
  start-page: 186
  year: 2020
  end-page: 230
  ident: B29
  article-title: Evaluation of the rapid antigen test Panbio COVID-19 in saliva and nasal swabs in a population-based point-of-care study
  publication-title: J Infect
  doi: 10.1016/j.jinf.2020.12.007
  contributor:
    fullname: Gutiérrez, F
– volume: 117
  start-page: 5
  year: 2019
  end-page: 10
  ident: B36
  article-title: Oral fluid: non-invasive alternative for parvovirus B19 diagnosis?
  publication-title: J Clin Virol
  doi: 10.1016/j.jcv.2019.05.008
  contributor:
    fullname: van Binnendijk, R
– volume: 71
  start-page: 841
  year: 2020
  end-page: 843
  ident: B15
  article-title: Consistent detection of 2019 novel coronavirus in saliva
  publication-title: Clin Infect Dis
  doi: 10.1093/cid/ciaa149
  contributor:
    fullname: Yuen, KY
– year: 2021
  ident: B24
  article-title: Gene-based diagnosis of tuberculosis from oral swabs with a new generation pathogen enrichment technique in real-world practice
  publication-title: Lancet
  doi: 10.2139/srrn.3781639
  contributor:
    fullname: Kim, S-H
– start-page: ciaa1589
  year: 2020
  ident: B31
  article-title: Self-collected oral fluid and nasal swab specimens demonstrate comparable sensitivity to clinician-collected nasopharyngeal swab specimens for the detection of SARS-CoV-2
  publication-title: Clin Infect Dis
  doi: 10.1093/cid/ciaa1589
  contributor:
    fullname: Klausner, JD
– volume: 12
  start-page: 349
  year: 2019
  ident: B21
  article-title: Mycobacterium tuberculosis detection from oral swabs with Xpert MTB/RIF ULTRA: a pilot study
  publication-title: BMC Res Notes
  doi: 10.1186/s13104-019-4385-y
  contributor:
    fullname: Franke, MF
– volume: 17
  start-page: 14
  year: 2020
  ident: B48
  article-title: Evaluation of a new point-of-care oral anti-HCV test for screening of hepatitis C virus infection
  publication-title: Virol J
  doi: 10.1186/s12985-020-1293-7
  contributor:
    fullname: Niu, J
– volume: 58
  year: 2020
  ident: B13
  article-title: Self-collected anterior nasal and saliva specimens versus health care worker-collected nasopharyngeal swabs for the molecular detection of SARS-CoV-2
  publication-title: J Clin Microbiol
  doi: 10.1128/JCM.01824-20
  contributor:
    fullname: Shakir, SM
– volume: 12
  start-page: 373
  year: 2012
  end-page: 380
  ident: B8
  article-title: Head-to-head comparison of accuracy of a rapid point-of-care HIV test with oral versus whole-blood specimens: a systematic review and meta-analysis
  publication-title: Lancet Infect Dis
  doi: 10.1016/S1473-3099(11)70368-1
  contributor:
    fullname: Joseph, L
– volume: 7
  start-page: 465
  year: 2020
  ident: B12
  article-title: Saliva as a candidate for COVID-19 diagnostic testing: a meta-analysis
  publication-title: Front Med (Lausanne)
  doi: 10.3389/fmed.2020.00465
  contributor:
    fullname: Varga, G
– volume: 383
  start-page: 494
  year: 2020
  end-page: 496
  ident: B4
  article-title: Swabs collected by patients or health care workers for SARS-CoV-2 testing
  publication-title: N Engl J Med
  doi: 10.1056/NEJMc2016321
  contributor:
    fullname: Berke, EM
– volume: 19
  start-page: 100148
  year: 2020
  ident: B47
  article-title: Oral swab testing by Xpert MTB/RIF Ultra for mass tuberculosis screening in prisons
  publication-title: J Clin Tuberc Other Mycobact Dis
  doi: 10.1016/j.jctube.2020.100148
  contributor:
    fullname: Croda, J
– volume: 15
  year: 2020
  ident: B32
  article-title: Sample adequacy controls for infectious disease diagnosis by oral swabbing
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0241542
  contributor:
    fullname: Cangelosi, GA
– volume: 26
  start-page: 2497
  year: 2020
  end-page: 2499
  ident: B37
  article-title: Viral RNA load in mildly symptomatic and asymptomatic children with COVID-19, Seoul, South Korea
  publication-title: Emerg Infect Dis
  doi: 10.3201/eid2610.202449
  contributor:
    fullname: Choi, EH
– volume: 17
  start-page: 695
  year: 2017
  ident: B9
  article-title: Diagnostic accuracy of tests to detect Hepatitis C antibody: a meta-analysis and review of the literature
  publication-title: BMC Infect Dis
  doi: 10.1186/s12879-017-2773-2
  contributor:
    fullname: Easterbrook, P
– volume: Volume 14
  start-page: 89
  year: 2021
  end-page: 95
  ident: B23
  article-title: Diagnostic yield of oral swab testing by TB-LAMP for diagnosis of pulmonary tuberculosis
  publication-title: IDR
  doi: 10.2147/IDR.S284157
  contributor:
    fullname: Pang, Y
– volume: 9
  start-page: 370
  year: 2020
  end-page: 372
  ident: B38
  article-title: Clinical utility of buccal swabs for severe acute respiratory syndrome coronavirus 2 detection in coronavirus sisease 2019-infected children
  publication-title: J Pediatric Infect Dis Soc
  doi: 10.1093/jpids/piaa068
  contributor:
    fullname: Thoon, KC
– volume: 43
  start-page: 5721
  year: 2005
  end-page: 5732
  ident: B3
  article-title: Defining the normal bacterial flora of the oral cavity
  publication-title: J Clin Microbiol
  doi: 10.1128/JCM.43.11.5721-5732.2005
  contributor:
    fullname: Dewhirst, FE
– volume: 57
  year: 2018
  ident: B5
  article-title: Noninvasive detection of tuberculosis by oral swab analysis
  publication-title: J Clin Microbiol
  doi: 10.1128/JCM.01847-18
  contributor:
    fullname: Cangelosi, GA
– volume: 11
  start-page: 175
  year: 2012
  ident: B40
  article-title: Quantitative detection of PfHRP2 in saliva of malaria patients in the Philippines
  publication-title: Malar J
  doi: 10.1186/1475-2875-11-175
  contributor:
    fullname: Moore, TB
– volume: 9
  start-page: 4124
  year: 2020
  ident: B22
  article-title: Molecular detection of Mycobacterium tuberculosis in oral mucosa from patients with presumptive tuberculosis
  publication-title: J Clin Med
  doi: 10.3390/jcm9124124
  contributor:
    fullname: Dominguez, J
– volume: 59
  year: 2020
  ident: B46
  article-title: COVID-19 serology at population scale: SARS-CoV-2-specific antibody responses in saliva
  publication-title: J Clin Microbiol
  doi: 10.1128/JCM.02204-20
  contributor:
    fullname: Heaney, CD
– volume: 29
  start-page: 107
  year: 2019
  end-page: 111
  ident: B39
  article-title: Detection of Pneumocystis jirovecii by quantitative real-time PCR in oral rinses from Pneumocystis pneumonia asymptomatic human immunodeficiency virus patients
  publication-title: J Mycol Med
  doi: 10.1016/j.mycmed.2019.04.001
  contributor:
    fullname: Rautemaa, R
– ident: e_1_3_2_9_2
  doi: 10.1016/S1473-3099(11)70368-1
– ident: e_1_3_2_19_2
  doi: 10.4103/ijmr.IJMR_2987_20
– ident: e_1_3_2_47_2
  doi: 10.1128/JCM.02204-20
– ident: e_1_3_2_27_2
  doi: 10.1038/s41368-020-0074-x
– ident: e_1_3_2_33_2
  doi: 10.1371/journal.pone.0241542
– ident: e_1_3_2_6_2
  doi: 10.1128/JCM.01847-18
– ident: e_1_3_2_18_2
  doi: 10.1086/383322
– ident: e_1_3_2_15_2
  doi: 10.1128/JCM.01946-20
– ident: e_1_3_2_34_2
  doi: 10.1128/JCM.02881-20
– ident: e_1_3_2_17_2
  doi: 10.1128/JCM.01287-19
– ident: e_1_3_2_8_2
  doi: 10.1016/j.jviromet.2016.04.014
– ident: e_1_3_2_26_2
  doi: 10.3389/fmed.2020.580796
– ident: e_1_3_2_10_2
  doi: 10.1186/s12879-017-2773-2
– ident: e_1_3_2_31_2
  doi: 10.1016/S1473-3099(20)30196-1
– ident: e_1_3_2_13_2
  doi: 10.3389/fmed.2020.00465
– ident: e_1_3_2_23_2
  doi: 10.3390/jcm9124124
– ident: e_1_3_2_35_2
  doi: 10.1017/ice.2021.2
– ident: e_1_3_2_4_2
  doi: 10.1128/JCM.43.11.5721-5732.2005
– ident: e_1_3_2_5_2
  doi: 10.1056/NEJMc2016321
– ident: e_1_3_2_40_2
  doi: 10.1016/j.mycmed.2019.04.001
– ident: e_1_3_2_29_2
  doi: 10.1128/JCM.01438-20
– ident: e_1_3_2_46_2
  doi: 10.2147/IDR.S275152
– ident: e_1_3_2_22_2
  doi: 10.1186/s13104-019-4385-y
– ident: e_1_3_2_32_2
  doi: 10.1093/cid/ciaa1589
– ident: e_1_3_2_16_2
  doi: 10.1093/cid/ciaa149
– ident: e_1_3_2_41_2
  doi: 10.1186/1475-2875-11-175
– ident: e_1_3_2_42_2
  doi: 10.1126/scitranslmed.aan4479
– ident: e_1_3_2_45_2
  doi: 10.1093/cid/ciaa1388
– ident: e_1_3_2_3_2
  doi: 10.1021/acsinfecdis.7b00088
– ident: e_1_3_2_14_2
  doi: 10.1128/JCM.01824-20
– ident: e_1_3_2_37_2
  doi: 10.1016/j.jcv.2019.05.008
– ident: e_1_3_2_28_2
  doi: 10.1128/JCM.00776-20
– ident: e_1_3_2_36_2
  doi: 10.1038/s41598-019-47302-5
– ident: e_1_3_2_39_2
  doi: 10.1093/jpids/piaa068
– ident: e_1_3_2_38_2
  doi: 10.3201/eid2610.202449
– ident: e_1_3_2_44_2
  doi: 10.1093/infdis/jiw296
– ident: e_1_3_2_48_2
  doi: 10.1016/j.jctube.2020.100148
– ident: e_1_3_2_43_2
  doi: 10.1086/503836
– ident: e_1_3_2_2_2
  doi: 10.1128/JCM.01704-16
– ident: e_1_3_2_24_2
  doi: 10.2147/IDR.S284157
– ident: e_1_3_2_25_2
  doi: 10.2139/srrn.3781639
– ident: e_1_3_2_7_2
  doi: 10.1097/INF.0000000000002828
– ident: e_1_3_2_12_2
  doi: 10.1016/j.jinf.2020.04.005
– ident: e_1_3_2_49_2
  doi: 10.1186/s12985-020-1293-7
– ident: e_1_3_2_20_2
  doi: 10.1016/j.jmoldx.2020.10.018
– ident: e_1_3_2_30_2
  doi: 10.1016/j.jinf.2020.12.007
– ident: e_1_3_2_11_2
  doi: 10.1097/QAI.0000000000002146
– ident: e_1_3_2_21_2
  doi: 10.1128/JCM.01743-13
SSID ssj0014455
Score 2.4813993
Snippet Efforts to control transmissible infectious diseases rely on the ability to screen large populations, ideally in community settings. These efforts can be...
SourceID pubmedcentral
crossref
asm2
pubmed
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage e0236020
SubjectTerms Child
Clinical Microbiology
Communicable Diseases - diagnosis
COVID-19
Humans
Minireview
SARS-CoV-2
Specimen Handling
Sputum
Title A Look Inside: Oral Sampling for Detection of Non-oral Infectious Diseases
URI https://www.ncbi.nlm.nih.gov/pubmed/33888590
https://journals.asm.org/doi/10.1128/JCM.02360-20
https://pubmed.ncbi.nlm.nih.gov/PMC8451410
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLa2SaBdEG_GY4oQHLP1kbQpt2mAYDBAgkm7VU2awiTWITYO_HuctJ3YgQu9tXWq1nHrz_UXG-DM4QluXFLFQ0mZzhRNUqWpL13lcO1GKjW_BoYPwc2IDcZ8XANerYWxpH0lJ538fdrJJ2-WW_kxVd2KJ9Z9GvYF44ae2K1DHd1vFaKXqQPGeNG2IOLUdf2wYrt7ojvoDzumYrqDttGEdYzOhOD2a5zMp96KZ1q6o1Wq5C_fc70JGyVoJL3i5ragpvNtWCvaSH5vw_qwTJDvwKBH7hE2k1vbhvOCPOLVyHNiaOP5K0GASi71wrKvcjLLyMMsp2aJPsoXnKyvObksUjbzXRhdX730b2jZLoEmzBULGukgRRULKTW6HIUvmg5xhwl8TomeWbEk9YUjfS9jWapZliG6CIKIeykecZW_B418lusDIEEWac00zl-gGddZIgXD8Q6Cm1S5KmzBqdFYXNr7PLahhCdi1HBsNRx7TgvOK33GH0XpjD_k9gsdL6WqiWlBuKL9pYCpib16Bk3F1sYuTePw3yOPoOkZ2opJPDnH0Fh8fukTxB0L2UbEfXvXttb2A4oG1f4
link.rule.ids 230,314,727,780,784,885,27924,27925,53791,53793
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZ4iMcF8WY8IwTHbH0kbcoNDdAY60ACJG5Vk6YwiXWIjQP_HidtJ3bgQm9tnar94tZ2_cUGOHN4ihuXVPFQUqZzRdNMaepLVzlcu5HKzK-BuB90nln3hb_MAa_XwljSvpKDZvE-bBaDN8ut_BiqVs0Taz3EbcG4oSe25mGR-2Hk1kF6lTxgjJeNCyJOXdcPa767J1rddtw0NdMd1I5VWMb4TAhuv8fpeOjN2KapQZolS_6yPjfrsFa5jeSyvL0NmNPFJiyVjSS_N2E5rlLkW9C9JD10nMmtbcR5Qe7xauQxNcTx4pWgi0qu9MTyrwoyykl_VFCzSB_lS1bW15hclUmb8TY831w_tTu0aphAU-aKCY10kCHIQkqNRkfhq6ZD3GECn1OibVYszXzhSN_LWZ5plufoXwRBxL0Mj7jK34GFYlToPSBBHmnNNM5goBnXeSoFw_EOujeZclXYgFODWFJp_DixwYQnEkQ4sQgnntOA8xrP5KMsnvGH3G6J8VSqnpgGhDPoTwVMVezZM6gstjp2pRz7_x55Aiudp7iX9G77dwew6hkSi0lDOYewMPn80kfohUzksdW5H_Em2Fo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9swED4xEBUviMHGOmCzJvbo5pedOLyhlqrtaFeJVeItih0bkNa0WssD_z1nJ6noAy_LW5Jz5Hy-5O5yX-4ALn2e48YlVTyRlGmjaF4oTSMZKJ_rIFWF_TQwnsSDGRvd8_s3rb4caV_Jp075d94pnx4dt3I5V17DE_Om465g3NITvWVhvA-wxyNUsiZQrxMIjPGqeUHKaRBEScN5D4U36o47tm66jxpyAC2M0YTg7p2cr-bhln3aGKVtwuQbC9Q_gsPadSTX1RQ_wo4uj2G_aib5cgytcZ0mP4HRNblF55kMXTPOK_Ibr0buckseLx8Iuqmkp9eOg1WShSGTRUntj_ooXzGznlekVyVuVp9g1r_50x3QumkCzVkg1jTVcYFACyk1Gh6Fj5tOcIcJvE-J9lmxvIiEL6PQMFNoZgz6GHGc8rDAI4GKPsNuuSj1FyCxSbVmGlcx1oxrk0vBcLyPLk6hApW04YdFLKu1fpW5gCIUGSKcOYSz0G_DzwbPbFkV0HhH7rTCeCPVLEwbki30NwK2Mvb2GVQYVyG7VpCv_z3yO7SmvX52O5z8OoOD0PJYbCbKP4fd9b9nfYGOyFp-cyr3Ci6c2W0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Look+Inside%3A+Oral+Sampling+for+Detection+of+Non-oral+Infectious+Diseases&rft.jtitle=Journal+of+clinical+microbiology&rft.au=Valinetz%2C+Ethan+D.&rft.au=Cangelosi%2C+Gerard+A.&rft.date=2021-09-20&rft.issn=0095-1137&rft.eissn=1098-660X&rft.volume=59&rft.issue=10&rft_id=info:doi/10.1128%2FJCM.02360-20&rft.externalDBID=n%2Fa&rft.externalDocID=10_1128_JCM_02360_20
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0095-1137&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0095-1137&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0095-1137&client=summon