Detection of SARS-CoV-2 Variants Mu, Beta, Gamma, Lambda, Delta, Alpha, and Omicron in Wastewater Settled Solids Using Mutation-Specific Assays Is Associated with Regional Detection of Variants in Clinical Samples
Wastewater represents a pooled biological sample of the contributing community and thus a resource for assessing community health. Here, we show that emergence, spread, and disappearance of SARS-CoV-2 infections caused by variants of concern are reflected in the presence of variant genomic RNA in wa...
Saved in:
Published in | Applied and environmental microbiology Vol. 88; no. 8; p. e0004522 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society for Microbiology
26.04.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Wastewater represents a pooled biological sample of the contributing community and thus a resource for assessing community health. Here, we show that emergence, spread, and disappearance of SARS-CoV-2 infections caused by variants of concern are reflected in the presence of variant genomic RNA in wastewater settled solids. This work highlights an important public health use case for wastewater.
Changes in the circulation of SARS-CoV-2 variants of concern (VOCs) may require changes in the public health response to the COVID-19 pandemic, as they have the potential to evade vaccines and pharmaceutical interventions and may be more transmissive than other SARS-CoV-2 variants. As such, it is essential to track and prevent their spread in susceptible communities. We developed digital reverse transcription (RT)-PCR assays for mutations characteristic of VOCs and used them to quantify those mutations in samples of wastewater settled solids collected from a publicly owned treatment works (POTW) during different phases of the COVID-19 pandemic. Wastewater concentrations of single mutations characteristic of each VOC, normalized by the concentration of a conserved SARS-CoV-2 N gene, correlate with regional estimates of the proportion of clinical infections caused by each VOC. These results suggest that targeted RT-PCR assays can be used to detect variants circulating in communities and inform the public health response to the pandemic.
IMPORTANCE
Wastewater represents a pooled biological sample of the contributing community and thus a resource for assessing community health. Here, we show that emergence, spread, and disappearance of SARS-CoV-2 infections caused by variants of concern are reflected in the presence of variant genomic RNA in wastewater settled solids. This work highlights an important public health use case for wastewater. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Marlene Wolfe and Bridgette Hughes are co-first authors. Author order is on the basis of reverse alphabetical order. The authors declare a conflict of interest. B.H., D.D., V.C.H., and B.J.W. are employees of Verily Life Sciences. However, their employer had no say in the results of this study or the writing of this manuscript. |
ISSN: | 0099-2240 1098-5336 1098-5336 |
DOI: | 10.1128/aem.00045-22 |