Anion-Controlled Positional Switching of a Phenyl Group about the Dinuclear Core of a AuSb Complex
As part of our continuing interest in redox-active, anion-responsive main-group transition-metal platforms, we have investigated the effect of chloride by fluoride anion substitution on the core structure of a dinuclear AuSb platform. Starting from [(o-(iPr2P)C6H4)2Cl2SbPh]AuCl (2) in which the an...
Saved in:
Published in | Inorganic chemistry Vol. 55; no. 18; pp. 9162 - 9172 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
19.09.2016
|
Online Access | Get full text |
Cover
Loading…
Summary: | As part of our continuing interest in redox-active, anion-responsive main-group transition-metal platforms, we have investigated the effect of chloride by fluoride anion substitution on the core structure of a dinuclear AuSb platform. Starting from [(o-(iPr2P)C6H4)2Cl2SbPh]AuCl (2) in which the antimony-bound phenyl group is positioned trans to the gold atom, we found that the introduction of fluoride anions, as in [(o-(iPr2P)C6H4)2F2SbPh]AuCl (3) and [(o-(iPr2P)C6H4)2ClFSbPh]AuCl (4), produces structures in which the phenyl group switches to a perpendicular direction with respect to the gold atom. Replacement of the gold-bound chloride anion in 3 by a fluoride anion can be achieved by successive treatment with TlPF6 and [nBu4N][Ph3SiF2]. These reactions, which proceed via the intermediate zwitterionc gold antimonate complex [o-(iPr2P)C6H4)2F3SbPh]Au (6), trigger migration of the phenyl group to gold and afford [(o-(iPr2P)C6H4)2F3Sb]AuPh (7). Because the phenyl group in 7 is orthogonal to that in 3 and opposite to that in 2, the title AuSb platform can be regarded as a molecular analogue of a mechanical three-way switch in which the switching element is a phenyl group. Finally, while all complexes involved retain a Au → Sb interaction, this interaction is no longer present in the zwitterionic derivative 6 because of the neutralization of the Lewis acidity of the antimony center. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0020-1669 1520-510X |
DOI: | 10.1021/acs.inorgchem.6b01290 |