Heterogeneous-Backbone Foldamer Mimics of Zinc Finger Tertiary Structure

A variety of oligomeric backbones with compositions deviating from biomacromolecules can fold in defined ways. Termed “foldamers,” these agents have diverse potential applications. A number of protein-inspired secondary structures (e.g., helices, sheets) have been produced from unnatural backbones,...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 139; no. 23; pp. 7931 - 7938
Main Authors George, Kelly L, Horne, W. Seth
Format Journal Article
LanguageEnglish
Published WASHINGTON American Chemical Society 14.06.2017
Amer Chemical Soc
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A variety of oligomeric backbones with compositions deviating from biomacromolecules can fold in defined ways. Termed “foldamers,” these agents have diverse potential applications. A number of protein-inspired secondary structures (e.g., helices, sheets) have been produced from unnatural backbones, yet examples of tertiary folds combining several secondary structural elements in a single entity are rare. One promising strategy to address this challenge is the systematic backbone alteration of natural protein sequences, through which a subset of the native side chains is displayed on an unnatural building block to generate a heterogeneous backbone. A drawback to this approach is that substitution at more than one or two sites often comes at a significant energetic cost to fold stability. Here we report heterogeneous-backbone foldamers that mimic the zinc finger domain, a ubiquitous and biologically important metal-binding tertiary motif, and do so with a folded stability that is superior to the natural protein on which their design is based. A combination of UV–vis spectroscopy, isothermal titration calorimetry, and multidimensional NMR reveals that suitably designed oligomers with >20% modified backbones can form native-like tertiary folds with metal-binding environments identical to the prototype sequence (the third finger of specificity factor 1) and enhanced thermodynamic stability. These results expand the scope of heterogeneous-backbone foldamer design to a new tertiary structure class and show that judiciously applied backbone modification can be accompanied by improvement to fold stability.
Bibliography:NIH RePORTER
National Science Foundation
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0002-7863
1520-5126
DOI:10.1021/jacs.7b03114