Stability Tuning of Vapor-Adsorbed State of Vapochromic Pt(II) Complex by Introduction of Chiral Moiety
New luminescent Pt(II) complexes with chiral ester chains, [PtCl2(R,R-bpybe)] (R-1; bpybe = 2,2′-bipyridine-4,4′-dicarboxylic acid dibutyl ester) and its racemic mixture (rac-1) with the chiral isomer, S-1, were synthesized, and their vapochromic behavior was investigated. Single-crystal X-ray stru...
Saved in:
Published in | Inorganic chemistry Vol. 58; no. 11; pp. 7385 - 7392 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
03.06.2019
|
Online Access | Get full text |
Cover
Loading…
Summary: | New luminescent Pt(II) complexes with chiral ester chains, [PtCl2(R,R-bpybe)] (R-1; bpybe = 2,2′-bipyridine-4,4′-dicarboxylic acid dibutyl ester) and its racemic mixture (rac-1) with the chiral isomer, S-1, were synthesized, and their vapochromic behavior was investigated. Single-crystal X-ray structural analysis revealed that the rac-1 crystal was composed of only one crystallographically independent column formed by alternating stacking of R-1 and S-1 by the effective intermolecular Pt···Pt interaction. In contrast, three types of columnar structures with different Pt···Pt interactions were found for the R-1 crystal, probably because of the different packing of the chiral ester chains between the columns. Consequently, the estimated molecular volume of R-1 was slightly larger than that in the racemic crystal rac-1, although they have the same chemical formula. The X-ray structure of the toluene-adsorbed rac-1 (rac-1·toluene) also indicated that the intermolecular Pt···Pt interaction, which was effective for unsolvated rac-1, was completely canceled out by adsorption of toluene vapor. Both the rac-1 and R-1 crystals exhibited similar vapochromism driven by toluene vapor adsorption/desorption that switched the emission origin between the strongly emissive 3MMLCT (metal–metal-to-ligand charge transfer) to the weakly emissive 3π–π* phosphorescence. Although both crystals had the same chemical formula, the toluene vapor desorption temperature of R-1·toluene (84 °C) was obviously lower than that of rac-1·toluene (107 °C), suggesting that the binding interaction with toluene molecules was weaker in R-1·toluene than in rac-1·toluene. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0020-1669 1520-510X |
DOI: | 10.1021/acs.inorgchem.9b00533 |