A Chemically Cross-Linked NbO-Type Metal–Organic Framework: Cage or Window Partition?

By using a presynthetically cross-linked octacarboxylate ligand, a chemically cross-linked version of the NbO-type metal–organic framework (MOF) NOTT-101 (ZJNU-80) was prepared. Single-crystal X-ray structure analysis showed that ZJNU-80 adopts the same topology as the parent compound NOTT-101, and...

Full description

Saved in:
Bibliographic Details
Published inInorganic chemistry Vol. 55; no. 8; pp. 3974 - 3979
Main Authors Jiao, Jingjing, Liu, Huimin, Bai, Dongjie, He, Yabing
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 18.04.2016
Online AccessGet full text

Cover

Loading…
More Information
Summary:By using a presynthetically cross-linked octacarboxylate ligand, a chemically cross-linked version of the NbO-type metal–organic framework (MOF) NOTT-101 (ZJNU-80) was prepared. Single-crystal X-ray structure analysis showed that ZJNU-80 adopts the same topology as the parent compound NOTT-101, and the tethering groups take part in the window partition, not the cage partition. The gas adsorption studies showed that, despite the lower porosity, ZJNU-80a exhibits low-pressure gas adsorption behavior similar to that of the parent MOF NOTT-101a toward CO2, CH4, and N2 at ambient temperature because of the fact that the window partition as a result of chemical cross-linking does not almost alter the pore-size distributions. However, different adsorption behaviors toward 1-butene, a molecule with even larger kinetic diameter than that of the aforementioned adsorbates, were observed because the window partition alters the efficiency with which 1-butene molecules pack within ZJNU-80a and NOTT-101a at conditions close to saturation. This work provides a fundamental understanding on the effect of chemical cross-linking on the MOF’s structure and gas adsorption properties.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0020-1669
1520-510X
DOI:10.1021/acs.inorgchem.6b00253