Highly Efficient Catalytic Route for the Synthesis of Functionalized Silsesquioxanes

Silsesquioxanes (POSS) have recently become the subject of growing interest in many branches of materials chemistry. Despite this great interest, no direct metal-catalyzed method to cap the corner of the POSS molecules has yet been proposed. In this report, we present a highly efficient method for t...

Full description

Saved in:
Bibliographic Details
Published inInorganic chemistry Vol. 56; no. 15; pp. 9337 - 9342
Main Authors Kaźmierczak, Joanna, Kuciński, Krzysztof, Hreczycho, Grzegorz
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 07.08.2017
Online AccessGet full text

Cover

Loading…
More Information
Summary:Silsesquioxanes (POSS) have recently become the subject of growing interest in many branches of materials chemistry. Despite this great interest, no direct metal-catalyzed method to cap the corner of the POSS molecules has yet been proposed. In this report, we present a highly efficient method for the synthesis of functionalized silsesquioxanes mediated by scandium­(III) triflate, which opens up the possibility of introducing a wide variety of functional groups into this class of organosilicon compounds under mild conditions with excellent yields. We also investigated the differences in the activity of the Lewis acid (Sc­(OTf)3) and the hidden Brønsted acid (TfOH) generated in situ from triflates as catalysts in the functionalization of silsesquioxanes. What is more, this solution provides an efficient corner-capping reaction and other functionalizations to obtain silsesquioxane derivatives which are often not possible to synthesize with good yields, efficiency, and chemoselectivity using conventional methods.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0020-1669
1520-510X
1520-510X
DOI:10.1021/acs.inorgchem.7b01504