Predicting Gas Transport in Formed Zeolite Adsorbents from NMR Studies
The self-diffusion of nitrogen, methane, and carbon monoxide within a 5A zeolitic adsorbent has been examined with use of pulsed field gradient (PFG) NMR. In all cases, the diffusion process is well-described by a refined version of the long-range diffusion model (LRDM), adapted here for use with pe...
Saved in:
Published in | Journal of the American Chemical Society Vol. 124; no. 19; pp. 5264 - 5265 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
American Chemical Society
15.05.2002
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The self-diffusion of nitrogen, methane, and carbon monoxide within a 5A zeolitic adsorbent has been examined with use of pulsed field gradient (PFG) NMR. In all cases, the diffusion process is well-described by a refined version of the long-range diffusion model (LRDM), adapted here for use with pelletized adsorbents, which uses exclusively adsorbent porosity and isotherm data as inputs. Correlation of the experimental data with this model yields tortuosity factors that are characteristic of the adsorbate and reflect the longer diffusive path a molecule must take due to the winding nature of the pore structure. It is demonstrated that the diffusion model can be used to accurately predict the diffusion coefficients for a ternary gas mixture within a 5A zeolite. To fully characterize the diffusive process, the surface excess on the PFG NMR samples has been obtained by a novel gas-phase NMR technique that is well-suited for measuring pure and multicomponent isotherms. |
---|---|
Bibliography: | ark:/67375/TPS-59FHLX8K-7 istex:00AA8FAF5E672509797BBE559A8EFFB965C1A227 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0002-7863 1520-5126 |
DOI: | 10.1021/ja020194d |