Influence of Reservoir Infill on Coastal Deep Water Hypoxia

Ecological restoration of the Chesapeake through the Chesapeake Bay total maximum daily load (TMDL) requires the reduction of nitrogen, phosphorus, and sediment loads in the Chesapeake watershed because of the tidal water quality impairments and damage to living resources they cause. Within the Ches...

Full description

Saved in:
Bibliographic Details
Published inJournal of environmental quality Vol. 45; no. 3; pp. 887 - 893
Main Authors Linker, Lewis C., Batiuk, Richard A., Cerco, Carl F., Shenk, Gary W., Tian, Richard, Wang, Ping, Yactayo, Guido
Format Journal Article
LanguageEnglish
Published United States The American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc 01.05.2016
Online AccessGet full text

Cover

Loading…
More Information
Summary:Ecological restoration of the Chesapeake through the Chesapeake Bay total maximum daily load (TMDL) requires the reduction of nitrogen, phosphorus, and sediment loads in the Chesapeake watershed because of the tidal water quality impairments and damage to living resources they cause. Within the Chesapeake watershed, the Conowingo Reservoir has been filling in with sediment for almost a century and is now in a state of near‐full capacity called dynamic equilibrium. The development of the Chesapeake TMDL in 2010 was with the assumption that the Conowingo Reservoir was still effectively trapping sediment and nutrients. This is now known not to be the case. In a TMDL, pollutant loads beyond the TMDL allocation, which are brought about by growth or other conditions, must be offset. Using the analysis tools of the Chesapeake TMDL for assessing the degree of water quality standard attainment, the estimated nutrient and sediment loads from a simulated dynamic equilibrium infill condition of the Conowingo Reservoir were determined. The influence on Chesapeake water quality by a large storm and scour event of January 1996 on the Susquehanna River was estimated, and the same storm and scour events were also evaluated in the more critical living resource period of June. An analysis was also made on the estimated influence of more moderate high flow events. The infill of the Conowingo reservoir had estimated impairments of water quality, primarily on deep‐water and deep‐channel dissolved oxygen, because of increased discharge and transport of organic and particulate inorganic nutrients from the Conowingo Reservoir. Core Ideas The Conowingo Reservoir has been filling in with sediment for almost a century. It is now in a state of near‐full capacity called dynamic equilibrium. Conowingo infill causes impairments to Chesapeake water quality. The estimated impairments are primarily on deep water dissolved oxygen. Increased discharge and transport of nutrients from Conowingo are the cause.
Bibliography:Assigned to Associate Editor Peter Kleinman.
All rights reserved.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0047-2425
1537-2537
DOI:10.2134/jeq2014.11.0461