Synthesis of Highly Crystalline and Monodisperse Maghemite Nanocrystallites without a Size-Selection Process
The synthesis of highly crystalline and monodisperse γ-Fe2O3 nanocrystallites is reported. High-temperature (300 °C) aging of iron−oleic acid metal complex, which was prepared by the thermal decomposition of iron pentacarbonyl in the presence of oleic acid at 100 °C, was found to generate monodisper...
Saved in:
Published in | Journal of the American Chemical Society Vol. 123; no. 51; pp. 12798 - 12801 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
26.12.2001
|
Online Access | Get full text |
Cover
Loading…
Summary: | The synthesis of highly crystalline and monodisperse γ-Fe2O3 nanocrystallites is reported. High-temperature (300 °C) aging of iron−oleic acid metal complex, which was prepared by the thermal decomposition of iron pentacarbonyl in the presence of oleic acid at 100 °C, was found to generate monodisperse iron nanoparticles. The resulting iron nanoparticles were transformed to monodisperse γ-Fe2O3 nanocrystallites by controlled oxidation by using trimethylamine oxide as a mild oxidant. Particle size can be varied from 4 to 16 nm by controlling the experimental parameters. Transmission electron microscopic images of the particles showed 2-dimensional and 3-dimensional assembly of particles, demonstrating the uniformity of these nanoparticles. Electron diffraction, X-ray diffraction, and high-resolution transmission electron microscopic (TEM) images of the nanoparticles showed the highly crystalline nature of the γ-Fe2O3 structures. Monodisperse γ-Fe2O3 nanocrystallites with a particle size of 13 nm also can be generated from the direct oxidation of iron pentacarbonyl in the presence of oleic acid with trimethylamine oxide as an oxidant. |
---|---|
Bibliography: | ark:/67375/TPS-V1Z3WXF3-V istex:97C1C62252D34BC3DC90A7CBA8A3CC39DE2D17BE ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0002-7863 1520-5126 |
DOI: | 10.1021/ja016812s |