Glutathione Peroxidase-like Antioxidant Activity of Diaryl Diselenides:  A Mechanistic Study

The synthesis, structure, and thiol peroxidase-like antioxidant activities of several diaryl diselenides having intramolecularly coordinating amino groups are described. The diselenides derived from enantiomerically pure R-(+)- and S-(−)-N,N-dimethyl(1-ferrocenylethyl)amine show excellent peroxidase...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 123; no. 5; pp. 839 - 850
Main Authors Mugesh, G, Panda, Arunashree, Singh, Harkesh B, Punekar, Narayan S, Butcher, Ray J
Format Journal Article
LanguageEnglish
Published WASHINGTON American Chemical Society 07.02.2001
Amer Chemical Soc
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The synthesis, structure, and thiol peroxidase-like antioxidant activities of several diaryl diselenides having intramolecularly coordinating amino groups are described. The diselenides derived from enantiomerically pure R-(+)- and S-(−)-N,N-dimethyl(1-ferrocenylethyl)amine show excellent peroxidase activity. To investigate the mechanistic role of various organoselenium intermediates, a detailed in situ characterization of the intermediates has been carried out by 77Se NMR spectroscopy. While most of the diselenides exert their peroxidase activity via selenol, selenenic acid, and selenenyl sulfide intermediates, the differences in the relative activities of the diselenides are due to the varying degree of intramolecular Se···N interaction. The diselenides having strong Se···N interactions are found to be inactive due to the ability of their selenenyl sulfide derivatives to enhance the reverse GPx cycle (RSeSR + H2O2 = RSeOH). In these cases, the nucleophilic attack of thiol takes place preferentially at selenium rather than sulfur and this reduces the formation of selenol by terminating the forward reaction. On the other hand, the diselenides having weak Se···N interactions are found to be more active due to the fast reaction of the selenenyl sulfide derivatives with thiol to produce diphenyl disulfide and the expected selenol (RSeSR + PhSH = PhSSPh + RSeH). The unsubstituted diaryl diselenides are found to be less active due to the slow reactions of these diselenides with thiol and hydrogen peroxide and also due to the instability of the intermediates. The catalytic cycles of 18 and 19 strongly resemble the mechanism by which the natural enzyme, glutathione peroxidase, catalyzes the reduction of hydroperoxides.
Bibliography:ark:/67375/TPS-PCN57QVF-K
istex:765CDD430E410950BB6177FD160C2BA3495B54D3
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0002-7863
1520-5126
DOI:10.1021/ja994467p