Trapping of 1,8-Biradical Intermediates by Molecular Oxygen in Photocycloaddition of Naphthyl-N-(naphthylcarbonyl)carboxamides; Formation of Novel 1,8-Epidioxides and Evidence of Stepwise Aromatic Cycloaddition

The photocycloaddition reaction of naphthyl-N-(naphthylcarbonyl)carboxamides (1) was examined under argon and oxygen atmospheres. In addition to the [2 + 2] and [4 + 4] cycloadducts, 3 and 4, respectively, novel 1,8-epidioxides (5) were formed under oxygen atmosphere. The transient absorption at λma...

Full description

Saved in:
Bibliographic Details
Published inJournal of organic chemistry Vol. 66; no. 1; pp. 66 - 73
Main Authors Kohmoto, Shigeo, Kobayashi, Takashi, Minami, Jun, Ying, Xu, Yamaguchi, Kentaro, Karatsu, Takashi, Kitamura, Akihide, Kishikawa, Keiki, Yamamoto, Makoto
Format Journal Article
LanguageEnglish
Published WASHINGTON American Chemical Society 12.01.2001
Amer Chemical Soc
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The photocycloaddition reaction of naphthyl-N-(naphthylcarbonyl)carboxamides (1) was examined under argon and oxygen atmospheres. In addition to the [2 + 2] and [4 + 4] cycloadducts, 3 and 4, respectively, novel 1,8-epidioxides (5) were formed under oxygen atmosphere. The transient absorption at λmax of 360 nm with the lifetime of 360 ns was observed by laser flash photolysis of 1c and was interpreted as the absorption of biradical intermediate 2. On the basis of the anti stereochemistry of 5, which was different from that of the major [4 + 4] cycloadducts, syn-4, it was deduced that equilibrium between biradical intermediates syn-2 and anti- 2 would exist. Retro [2 + 2] cycloaddition of 3 was responsible for the efficient trapping of the biradical intermediate with molecular oxygen. The photocycloaddition of the anthryl derivatives, 9-anthryl-N-(methylethyl)-N-(naphthylcarbonyl)carboxamides (7), afforded the [4 + 4] cycloadducts (8) exclusively in a quantitative yield even under oxygen atmosphere. The absence of trapping with molecular oxygen was interpreted to be due to the lack of retro [4 + 4] cycloaddition of 8.
Bibliography:ark:/67375/TPS-WXBDRC0K-3
istex:509F8FEAC4824EA10AE5668725272E29270C7C92
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0022-3263
1520-6904
DOI:10.1021/jo0010227