Differential inactivation of Escherichia coli membrane dehydrogenases by a myeloperoxidase-mediated antimicrobial system

Neutrophil myeloperoxidase, hydrogen peroxide, and chloride constitute a potent antimicrobial system with multiple effects on microbial cytoplasmic membranes. Among these is inhibition of succinate-dependent respiration mediated, principally, through inactivation of succinate dehydrogenase. Succinat...

Full description

Saved in:
Bibliographic Details
Published inBiochemistry (Easton) Vol. 29; no. 4; pp. 1075 - 1080
Main Authors Rakita, Robert M, Michel, Bryce R, Rosen, Henry
Format Journal Article
LanguageEnglish
Published Washington, DC American Chemical Society 01.01.1990
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Neutrophil myeloperoxidase, hydrogen peroxide, and chloride constitute a potent antimicrobial system with multiple effects on microbial cytoplasmic membranes. Among these is inhibition of succinate-dependent respiration mediated, principally, through inactivation of succinate dehydrogenase. Succinate-dependent respiration is inhibited at rates that correlate with loss of microbial viability, suggesting that loss of respiration might contribute to the microbicidal event. Because respiration in Escherichia coli can be mediated by dehydrogenases other than succinate dehydrogenase, the effects of the myeloperoxidase system on other membrane dehydrogenases were evaluated by histochemical activity stains of electrophoretically separated membrane proteins. Two bands of succinate dehydrogenase activity proved the most susceptible to inactivation with complete loss of staining activity within 20 min, under the conditions employed. A group with intermediate susceptibility, consisting of lactate, malate, glycerol-3-phosphate, and dihydroorotate dehydrogenases as well as three bands of glucose-6-phosphate dehydrogenase, was almost completely inactivated within 30 min. The relatively resistant group, including the dehydrogenases for glutamate, NADH, and NADPH and the remaining bands of glucose-6-phosphate dehydrogenase, retained substantial amounts of diaphorase activity for up to 60 min of incubation with the myeloperoxidase system. The differential effects of myeloperoxidase on dehydrogenase inactivation could not be correlated with published enzyme contents of flavin or iron-sulfur centers, potential targets of myeloperoxidase-derived oxidants. Despite the relative resistance of NADH dehydrogenase/diaphorase activity to myeloperoxidase-mediated inactivation, electron transport particles prepared from E. coli incubated for 20 min with the myeloperoxidase system lost 55% of their NADH oxidase activity.
Bibliography:istex:B7696332BD2463A4D9AE36EC7241C4840F15AC6B
ark:/67375/TPS-XP2R2FRG-8
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0006-2960
1520-4995
DOI:10.1021/bi00456a033