Self-Immolative Polymersomes for High-Efficiency Triggered Release and Programmed Enzymatic Reactions
Stimuli-triggered disassembly of block copolymer vesicles or polymersomes has been conventionally achieved via solubility switching of the bilayer-forming block, requiring cooperative changes of most of the repeating units. Herein we report an alternative approach by incorporating hydrophobic blocks...
Saved in:
Published in | Journal of the American Chemical Society Vol. 136; no. 20; pp. 7492 - 7497 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
21.05.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Stimuli-triggered disassembly of block copolymer vesicles or polymersomes has been conventionally achieved via solubility switching of the bilayer-forming block, requiring cooperative changes of most of the repeating units. Herein we report an alternative approach by incorporating hydrophobic blocks exhibiting stimuli-triggered head-to-tail cascade depolymerization features. Amphiphilic block copolymers bearing this motif self-assemble into self-immolative polymersomes (SIPsomes). By modular design of terminal capping moieties, visible light, UV light, and reductive milieu can be utilized to actuate SIPsomes disintegration into water-soluble small molecules and hydrophilic blocks. The design of SIPsomes allows for triggered drug co-release and controllable access toward protons, oxygen, and enzymatic substrates. We also demonstrate programmed (OR-, AND-, and XOR-type logic) enzymatic reactions by integrating SIPsome encapsulation and trigger/capping moiety-selective cascade depolymerization events. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0002-7863 1520-5126 1520-5126 |
DOI: | 10.1021/ja5030832 |