Atom Transfer Radical Polymerization Enabled by Sonochemically Labile Cu-carbonate Species
Atom transfer radical polymerization (ATRP) has been previously mediated by ultrasound using a low concentration of copper complex in water (sono-ATRP) or by addition of piezoelectric materials in organic solvents (mechano-ATRP). However, these procedures proceeded slowly and yielded polymers contam...
Saved in:
Published in | ACS macro letters Vol. 8; no. 2; pp. 161 - 165 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
19.02.2019
|
Online Access | Get full text |
Cover
Loading…
Summary: | Atom transfer radical polymerization (ATRP) has been previously mediated by ultrasound using a low concentration of copper complex in water (sono-ATRP) or by addition of piezoelectric materials in organic solvents (mechano-ATRP). However, these procedures proceeded slowly and yielded polymers contaminated by new chains initiated by hydroxyl radicals or by residual piezoelectrics. Unexpectedly, in the presence of sodium carbonate, rapid sono-ATRP of methyl acrylate in DMSO was achieved (80% conversion in <2 h) with excellent control of molecular weights and low dispersities (M w/M n < 1.2). The in situ formed CuII/L-CO3 complex in the the presence of ultrasound generated CuI/L species as activators for ATRP and carbonate radical anions. The latter were scavenged by DMSO that was oxidized to dimethyl sulfone. This simple and robust process employs low-intensity ultrasound, air-stable CuII/L catalysts, and carbonate or bicarbonate salts (washing soda or baking soda) to prepare well-defined polyacrylates. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2161-1653 2161-1653 |
DOI: | 10.1021/acsmacrolett.9b00029 |