Receptor-Mediated Delivery of Magnetic Nanoparticles across the Blood–Brain Barrier

A brain delivery probe was prepared by covalently conjugating lactoferrin (Lf) to a poly(ethylene glycol) (PEG)-coated Fe3O4 nanoparticle in order to facilitate the transport of the nanoparticles across the blood–brain barrier (BBB) by receptor-mediated transcytosis via the Lf receptor present on ce...

Full description

Saved in:
Bibliographic Details
Published inACS nano Vol. 6; no. 4; pp. 3304 - 3310
Main Authors Qiao, Ruirui, Jia, Qiaojuan, Hüwel, Sabine, Xia, Rui, Liu, Ting, Gao, Fabao, Galla, Hans-Joachim, Gao, Mingyuan
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 24.04.2012
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A brain delivery probe was prepared by covalently conjugating lactoferrin (Lf) to a poly(ethylene glycol) (PEG)-coated Fe3O4 nanoparticle in order to facilitate the transport of the nanoparticles across the blood–brain barrier (BBB) by receptor-mediated transcytosis via the Lf receptor present on cerebral endothelial cells. The efficacy of the Fe3O4-Lf conjugate to cross the BBB was evaluated in vitro using a cell culture model for the blood–brain barrier as well as in vivo in SD rats. For an in vitro experiment, a well-established porcine BBB model was used based on the primary culture of cerebral capillary endothelial cells grown on filter supports, thus allowing one to follow the transfer of nanoparticles from the apical (blood) to the basolateral (brain) side. For in vivo experiments, SD rats were used as animal model to detect the passage of the nanoparticles through the BBB by MRI techniques. The results of both in vitro and in vivo experiments revealed that the Fe3O4-Lf probe exhibited an enhanced ability to cross the BBB in comparison to the PEG-coated Fe3O4 nanoparticles and further suggested that the Lf-receptor-mediated transcytosis was an effective measure for delivering the nanoparticles across the BBB.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1936-0851
1936-086X
DOI:10.1021/nn300240p