Light-Induced Ostwald Ripening of Organic Nanodots to Rods
Ostwald ripening allows the synthesis of 1D nanorods of metal and semiconductor nanoparticles. However, this phenomenon is unsuccessful with organic π-systems due to their spontaneous self-assembly to elongated fibers or tapes. Here we demonstrate the uses of light as a versatile tool to control the...
Saved in:
Published in | Journal of the American Chemical Society Vol. 134; no. 17; pp. 7227 - 7230 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
WASHINGTON
American Chemical Society
02.05.2012
Amer Chemical Soc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Ostwald ripening allows the synthesis of 1D nanorods of metal and semiconductor nanoparticles. However, this phenomenon is unsuccessful with organic π-systems due to their spontaneous self-assembly to elongated fibers or tapes. Here we demonstrate the uses of light as a versatile tool to control the ripening of amorphous organic nanodots (ca. 15 nm) of an azobenzene-derived molecular assembly to micrometer-sized supramolecular rods. A surface-confined dipole variation associated with a low-yield (13–14%) trans–cis isomerization of the azobenzene moiety and the consequent dipole–dipole interaction in a nonpolar solvent is believed to be the driving force for the ripening of the nanodots to rods. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0002-7863 1520-5126 1520-5126 |
DOI: | 10.1021/ja301002g |