Memorization of Strain-Induced Moiré Patterns in Vertical van der Waals Materials

Twisting layers in van der Waals (vdW) materials have traditionally produced moiré patterns but often suffer from alignment issues and nonuniformity due to the sensitivity of twist angles. Applying strain alone can also generate these patterns, eliminating the need for interlayer rotation and enabl...

Full description

Saved in:
Bibliographic Details
Published inACS applied materials & interfaces Vol. 17; no. 10; pp. 16223 - 16233
Main Authors Dey, Aditya, Hasan, Nazmul, Wu, Stephen M., Askari, Hesam
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 12.03.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Twisting layers in van der Waals (vdW) materials have traditionally produced moiré patterns but often suffer from alignment issues and nonuniformity due to the sensitivity of twist angles. Applying strain alone can also generate these patterns, eliminating the need for interlayer rotation and enabling controlled, reproducible moiré formation. We present the mechanistic principles governing the evolution of strain-induced moiré patterns in vertically stacked graphene through atomistic simulations. By analyzing local strain distribution, we identify a three-stage interlayer slippage process responsible for pattern formation. Our analyses reveal that these triangular moiré domains are stable and retained upon unloading, ensuring consistent and reproducible pattern formation even after strain removal. Additionally, we demonstrate that this strain history can be utilized to reapply load in a step-by-step process to achieve uniform moiré domains without requiring higher strain magnitudes. This approach provides a robust mechanism for designing wafer-scale quantum materials with uniform and reproducible moiré superlattices.
AbstractList Twisting layers in van der Waals (vdW) materials have traditionally produced moiré patterns but often suffer from alignment issues and nonuniformity due to the sensitivity of twist angles. Applying strain alone can also generate these patterns, eliminating the need for interlayer rotation and enabling controlled, reproducible moiré formation. We present the mechanistic principles governing the evolution of strain-induced moiré patterns in vertically stacked graphene through atomistic simulations. By analyzing local strain distribution, we identify a three-stage interlayer slippage process responsible for pattern formation. Our analyses reveal that these triangular moiré domains are stable and retained upon unloading, ensuring consistent and reproducible pattern formation even after strain removal. Additionally, we demonstrate that this strain history can be utilized to reapply load in a step-by-step process to achieve uniform moiré domains without requiring higher strain magnitudes. This approach provides a robust mechanism for designing wafer-scale quantum materials with uniform and reproducible moiré superlattices.
Twisting layers in van der Waals (vdW) materials have traditionally produced moiré patterns but often suffer from alignment issues and nonuniformity due to the sensitivity of twist angles. Applying strain alone can also generate these patterns, eliminating the need for interlayer rotation and enabling controlled, reproducible moiré formation. We present the mechanistic principles governing the evolution of strain-induced moiré patterns in vertically stacked graphene through atomistic simulations. By analyzing local strain distribution, we identify a three-stage interlayer slippage process responsible for pattern formation. Our analyses reveal that these triangular moiré domains are stable and retained upon unloading, ensuring consistent and reproducible pattern formation even after strain removal. Additionally, we demonstrate that this strain history can be utilized to reapply load in a step-by-step process to achieve uniform moiré domains without requiring higher strain magnitudes. This approach provides a robust mechanism for designing wafer-scale quantum materials with uniform and reproducible moiré superlattices.Twisting layers in van der Waals (vdW) materials have traditionally produced moiré patterns but often suffer from alignment issues and nonuniformity due to the sensitivity of twist angles. Applying strain alone can also generate these patterns, eliminating the need for interlayer rotation and enabling controlled, reproducible moiré formation. We present the mechanistic principles governing the evolution of strain-induced moiré patterns in vertically stacked graphene through atomistic simulations. By analyzing local strain distribution, we identify a three-stage interlayer slippage process responsible for pattern formation. Our analyses reveal that these triangular moiré domains are stable and retained upon unloading, ensuring consistent and reproducible pattern formation even after strain removal. Additionally, we demonstrate that this strain history can be utilized to reapply load in a step-by-step process to achieve uniform moiré domains without requiring higher strain magnitudes. This approach provides a robust mechanism for designing wafer-scale quantum materials with uniform and reproducible moiré superlattices.
Twisting layers in van der Waals (vdW) materials have traditionally produced moiré patterns but often suffer from alignment issues and nonuniformity due to the sensitivity of twist angles. Applying strain alone can also generate these patterns, eliminating the need for interlayer rotation and enabling controlled, reproducible moiré formation. We present the mechanistic principles governing the evolution of strain-induced moiré patterns in vertically stacked graphene through atomistic simulations. By analyzing local strain distribution, we identify a three-stage interlayer slippage process responsible for pattern formation. Our analyses reveal that these triangular moiré domains are stable and retained upon unloading, ensuring consistent and reproducible pattern formation even after strain removal. Additionally, we demonstrate that this strain history can be utilized to reapply load in a step-by-step process to achieve uniform moiré domains without requiring higher strain magnitudes. This approach provides a robust mechanism for designing wafer-scale quantum materials with uniform and reproducible moiré superlattices.
Twisting layers in van der Waals (vdW) materials have traditionally produced moiré patterns but often suffer from alignment issues and nonuniformity due to the sensitivity of twist angles. Applying strain alone can also generate these patterns, eliminating the need for interlayer rotation and enabling controlled, reproducible moiré formation. We present the mechanistic principles governing the evolution of strain-induced moiré patterns in vertically stacked graphene through atomistic simulations. By analyzing local strain distribution, we identify a three-stage interlayer slippage process responsible for pattern formation. Our analyses reveal that these triangular moiré domains are stable and retained upon unloading, ensuring consistent and reproducible pattern formation even after strain removal. Additionally, we demonstrate that this strain history can be utilized to reapply load in a step-by-step process to achieve uniform moiré domains without requiring higher strain magnitudes. This approach provides a robust mechanism for designing wafer-scale quantum materials with uniform and reproducible moiré superlattices.
Author Dey, Aditya
Wu, Stephen M.
Askari, Hesam
Hasan, Nazmul
AuthorAffiliation Department of Electrical and Computer Engineering
Department of Mechanical Engineering
Department of Physics and Astronomy
AuthorAffiliation_xml – name: Department of Physics and Astronomy
– name: Department of Electrical and Computer Engineering
– name: Department of Mechanical Engineering
Author_xml – sequence: 1
  givenname: Aditya
  orcidid: 0000-0002-5041-8662
  surname: Dey
  fullname: Dey, Aditya
  email: adey2@ur.rochester.edu
  organization: Department of Mechanical Engineering
– sequence: 2
  givenname: Nazmul
  surname: Hasan
  fullname: Hasan, Nazmul
  organization: Department of Electrical and Computer Engineering
– sequence: 3
  givenname: Stephen M.
  orcidid: 0000-0001-6079-3354
  surname: Wu
  fullname: Wu, Stephen M.
  organization: Department of Physics and Astronomy
– sequence: 4
  givenname: Hesam
  orcidid: 0000-0001-5562-1363
  surname: Askari
  fullname: Askari, Hesam
  organization: Department of Mechanical Engineering
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40033932$$D View this record in MEDLINE/PubMed
BookMark eNqFkctrFTEUxoNU7EO3XUqWUpjbvGZiViKlL-hFoT6W4dzkTE2ZSWoyU6g7_z__KFPu7UUX4uockt_5-Pi-fbITU0RCDjlbcCb4MbgCY1goJ4TqxDOyx41SzVvRip3trtQu2S_llrFOCta-ILuKMSmNFHvkeoljyuEHTCFFmnp6PWUIsbmMfnbo6TKFjL9-0o8wTZhjoSHSL5in4GCg9xCpx0y_AgyFLqESoW4vyfO-Dny1mQfk89npp5OL5urD-eXJ-6sGFFdT45nrRC-9M9p4qSVHb6rvlXEMZefa3uleSc2dghZkLxxq7IxceW-M7hjIA_JurXs3r0b0DmP1Pti7HEbIDzZBsH__xPDN3qR7y7nhgpuuKrzZKOT0fcYy2TEUh8MAEdNcbI2LCa1a3f4f5VoqpjVTFX39p6-toafUK7BYAy6nUjL2W4Qz-1irXddqN7XWg6P1QX23t2nOseb6L_g3tGilKA
Cites_doi 10.1021/acsami.9b09259
10.1039/D1CP00681A
10.1038/s41567-020-01062-6
10.1038/s41563-020-00840-0
10.1063/1.4948357
10.1038/srep21516
10.1103/PhysRevB.78.113407
10.1016/j.jmps.2022.104831
10.1016/j.cpc.2020.107206
10.1007/s40820-020-00464-8
10.1088/1361-6528/aba39e
10.1021/acsaenm.2c00259
10.1016/j.ssc.2013.08.008
10.1063/5.0153935
10.1016/j.mtcomm.2020.101647
10.1038/s41563-019-0346-z
10.1063/5.0202712
10.1021/acsanm.0c02809
10.1021/acs.nanolett.2c02010
10.1073/pnas.1309394110
10.1021/acs.chemrev.0c01111
10.1002/adma.202004974
10.1088/2053-1583/ac4af9
10.1016/j.cpc.2021.108171
10.1038/s41928-023-01071-2
10.1021/nn3059828
10.1002/adma.202306312
10.1126/science.aav1910
10.1016/j.cpc.2018.03.016
10.1103/PhysRevLett.124.097601
10.1103/PhysRevLett.123.036401
10.1021/acs.nanolett.4c00382
10.1063/1.4966192
10.1103/PhysRevX.13.041007
10.1103/PhysRevLett.123.216803
10.1103/PhysRevResearch.6.023203
10.1115/1.4051306
10.1021/nn303328e
10.1088/2752-5724/ac681d
10.1016/j.commatsci.2024.113273
10.1007/s10409-023-23176-x
10.1103/PhysRevLett.127.247703
10.1038/s41563-021-00973-w
10.1088/0953-8984/21/39/395502
10.1021/acsami.3c19101
10.1002/adma.201902765
10.1038/s41586-021-04173-z
10.1103/PhysRevB.106.115410
10.1038/s41563-022-01361-8
10.1021/acsmaterialslett.1c00651
10.1038/s41467-019-10691-2
10.1038/s41586-020-2260-6
10.1021/acs.jpclett.2c02066
10.1021/acs.nanolett.2c01481
10.1103/PhysRevApplied.17.024013
10.1038/s41586-021-03252-5
10.1016/j.matt.2020.07.001
10.1002/smll.202311185
10.1063/5.0142406
10.1038/s41467-021-27042-9
10.1103/PhysRevLett.122.086402
10.1038/s41563-020-0708-6
10.1088/0957-4484/21/6/065711
10.1038/s41586-021-04121-x
10.1063/5.0197757
10.1038/s41565-020-0682-9
10.1088/2053-1583/abd3e7
10.1109/TED.2004.836648
10.1021/acsnano.3c09354
10.1088/2053-1583/ac08f2
ContentType Journal Article
Copyright 2025 The Authors. Published by American Chemical Society
2025 The Authors. Published by American Chemical Society 2025 The Authors
Copyright_xml – notice: 2025 The Authors. Published by American Chemical Society
– notice: 2025 The Authors. Published by American Chemical Society 2025 The Authors
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
5PM
DOI 10.1021/acsami.4c22462
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
AGRICOLA

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1944-8252
EndPage 16233
ExternalDocumentID PMC11912196
40033932
10_1021_acsami_4c22462
c55769434
Genre Journal Article
GroupedDBID ---
.K2
23M
4.4
53G
55A
5GY
5VS
5ZA
6J9
7~N
AABXI
AAHBH
ABJNI
ABMVS
ABQRX
ABUCX
ACGFS
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CUPRZ
EBS
ED~
F5P
GGK
GNL
IH9
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
AAYXX
ABBLG
ABLBI
CITATION
NPM
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-a414t-d0c62f3dc979d3731ed9252b9c0e36c5fc7f4371c4a5a3f2ce7e693bdd99760a3
IEDL.DBID ACS
ISSN 1944-8244
1944-8252
IngestDate Thu Aug 21 18:39:12 EDT 2025
Wed Jul 02 04:54:13 EDT 2025
Fri Jul 11 10:32:15 EDT 2025
Thu Mar 20 02:21:24 EDT 2025
Tue Jul 01 05:18:31 EDT 2025
Thu Mar 13 04:02:00 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords interface mechanics
strain-induced moiré patterns
strain memorization
machine-learned interatomic potential
atomistic simulations
strain-induced moiré patterns
Language English
License https://creativecommons.org/licenses/by/4.0
Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a414t-d0c62f3dc979d3731ed9252b9c0e36c5fc7f4371c4a5a3f2ce7e693bdd99760a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-5041-8662
0000-0001-5562-1363
0000-0001-6079-3354
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC11912196
PMID 40033932
PQID 3173407704
PQPubID 23479
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11912196
proquest_miscellaneous_3200274575
proquest_miscellaneous_3173407704
pubmed_primary_40033932
crossref_primary_10_1021_acsami_4c22462
acs_journals_10_1021_acsami_4c22462
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-03-12
PublicationDateYYYYMMDD 2025-03-12
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-12
  day: 12
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS applied materials & interfaces
PublicationTitleAlternate ACS Appl. Mater. Interfaces
PublicationYear 2025
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref67/cit67
ref24/cit24
ref38/cit38
ref50/cit50
ref64/cit64
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref65/cit65
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref68/cit68
ref26/cit26
ref55/cit55
ref69/cit69
ref12/cit12
ref15/cit15
ref62/cit62
ref66/cit66
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref70/cit70
ref7/cit7
References_xml – ident: ref57/cit57
  doi: 10.1021/acsami.9b09259
– ident: ref44/cit44
  doi: 10.1039/D1CP00681A
– ident: ref7/cit7
  doi: 10.1038/s41567-020-01062-6
– ident: ref4/cit4
  doi: 10.1038/s41563-020-00840-0
– ident: ref70/cit70
  doi: 10.1063/1.4948357
– ident: ref55/cit55
  doi: 10.1038/srep21516
– ident: ref65/cit65
  doi: 10.1103/PhysRevB.78.113407
– ident: ref49/cit49
  doi: 10.1016/j.jmps.2022.104831
– ident: ref40/cit40
  doi: 10.1016/j.cpc.2020.107206
– ident: ref3/cit3
  doi: 10.1007/s40820-020-00464-8
– ident: ref22/cit22
  doi: 10.1088/1361-6528/aba39e
– ident: ref53/cit53
  doi: 10.1021/acsaenm.2c00259
– ident: ref66/cit66
  doi: 10.1016/j.ssc.2013.08.008
– ident: ref26/cit26
  doi: 10.1063/5.0153935
– ident: ref43/cit43
  doi: 10.1016/j.mtcomm.2020.101647
– ident: ref1/cit1
  doi: 10.1038/s41563-019-0346-z
– ident: ref68/cit68
  doi: 10.1063/5.0202712
– ident: ref42/cit42
  doi: 10.1021/acsanm.0c02809
– ident: ref37/cit37
  doi: 10.1021/acs.nanolett.2c02010
– ident: ref54/cit54
  doi: 10.1073/pnas.1309394110
– ident: ref33/cit33
  doi: 10.1021/acs.chemrev.0c01111
– ident: ref20/cit20
  doi: 10.1002/adma.202004974
– ident: ref63/cit63
  doi: 10.1088/2053-1583/ac4af9
– ident: ref47/cit47
  doi: 10.1016/j.cpc.2021.108171
– ident: ref31/cit31
  doi: 10.1038/s41928-023-01071-2
– ident: ref51/cit51
  doi: 10.1021/nn3059828
– ident: ref69/cit69
  doi: 10.1002/adma.202306312
– ident: ref8/cit8
  doi: 10.1126/science.aav1910
– ident: ref39/cit39
  doi: 10.1016/j.cpc.2018.03.016
– ident: ref5/cit5
  doi: 10.1103/PhysRevLett.124.097601
– ident: ref11/cit11
  doi: 10.1103/PhysRevLett.123.036401
– ident: ref59/cit59
  doi: 10.1021/acs.nanolett.4c00382
– ident: ref34/cit34
  doi: 10.1063/1.4966192
– ident: ref52/cit52
  doi: 10.1103/PhysRevX.13.041007
– ident: ref12/cit12
  doi: 10.1103/PhysRevLett.123.216803
– ident: ref67/cit67
  doi: 10.1103/PhysRevResearch.6.023203
– ident: ref30/cit30
  doi: 10.1115/1.4051306
– ident: ref50/cit50
  doi: 10.1021/nn303328e
– ident: ref32/cit32
  doi: 10.1088/2752-5724/ac681d
– ident: ref45/cit45
  doi: 10.1016/j.commatsci.2024.113273
– ident: ref58/cit58
  doi: 10.1007/s10409-023-23176-x
– ident: ref10/cit10
  doi: 10.1103/PhysRevLett.127.247703
– ident: ref61/cit61
  doi: 10.1038/s41563-021-00973-w
– ident: ref41/cit41
  doi: 10.1088/0953-8984/21/39/395502
– ident: ref24/cit24
  doi: 10.1021/acsami.3c19101
– ident: ref35/cit35
  doi: 10.1002/adma.201902765
– ident: ref19/cit19
  doi: 10.1038/s41586-021-04173-z
– ident: ref36/cit36
  doi: 10.1103/PhysRevB.106.115410
– ident: ref21/cit21
  doi: 10.1038/s41563-022-01361-8
– ident: ref48/cit48
  doi: 10.1021/acsmaterialslett.1c00651
– ident: ref23/cit23
  doi: 10.1038/s41467-019-10691-2
– ident: ref6/cit6
  doi: 10.1038/s41586-020-2260-6
– ident: ref56/cit56
  doi: 10.1021/acs.jpclett.2c02066
– ident: ref13/cit13
  doi: 10.1021/acs.nanolett.2c01481
– ident: ref46/cit46
  doi: 10.1103/PhysRevApplied.17.024013
– ident: ref62/cit62
  doi: 10.1038/s41586-021-03252-5
– ident: ref2/cit2
  doi: 10.1016/j.matt.2020.07.001
– ident: ref25/cit25
  doi: 10.1002/smll.202311185
– ident: ref27/cit27
  doi: 10.1063/5.0142406
– ident: ref15/cit15
  doi: 10.1038/s41467-021-27042-9
– ident: ref14/cit14
  doi: 10.1103/PhysRevLett.122.086402
– ident: ref16/cit16
  doi: 10.1038/s41563-020-0708-6
– ident: ref64/cit64
  doi: 10.1088/0957-4484/21/6/065711
– ident: ref9/cit9
  doi: 10.1038/s41586-021-04121-x
– ident: ref38/cit38
  doi: 10.1063/5.0197757
– ident: ref17/cit17
  doi: 10.1038/s41565-020-0682-9
– ident: ref18/cit18
  doi: 10.1088/2053-1583/abd3e7
– ident: ref28/cit28
  doi: 10.1109/TED.2004.836648
– ident: ref60/cit60
  doi: 10.1021/acsnano.3c09354
– ident: ref29/cit29
  doi: 10.1088/2053-1583/ac08f2
SSID ssj0063205
Score 2.452508
Snippet Twisting layers in van der Waals (vdW) materials have traditionally produced moiré patterns but often suffer from alignment issues and nonuniformity due to...
Twisting layers in van der Waals (vdW) materials have traditionally produced moiré patterns but often suffer from alignment issues and nonuniformity due to the...
Twisting layers in van der Waals (vdW) materials have traditionally produced moiré patterns but often suffer from alignment issues and nonuniformity due to the...
SourceID pubmedcentral
proquest
pubmed
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 16223
SubjectTerms design
domain
graphene
materials
strains
Surfaces, Interfaces, and Applications
van der Waals forces
Title Memorization of Strain-Induced Moiré Patterns in Vertical van der Waals Materials
URI http://dx.doi.org/10.1021/acsami.4c22462
https://www.ncbi.nlm.nih.gov/pubmed/40033932
https://www.proquest.com/docview/3173407704
https://www.proquest.com/docview/3200274575
https://pubmed.ncbi.nlm.nih.gov/PMC11912196
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYquJRDeZS2y6MyaiVOhsR2HPuIEAghLUJaKNwix54IhJStSPbCjf_Hj2LsZIFl1cfZTiLbY883mfH3EfLTJyVoDiXLjAUmrS1ZiX6PVVKCVKC9icpzwzN1cilPr7Pr1_8d7zP4PN23rglSONIF6jM8bBe50nkIsw4OR9MzVwkeixUxIpdMo8ea0jPOPR-ckGtmndAcsnxfIPnG4xwvd_RHTSQqDIUmd3uTttxzD_M0jv8czAr51MNOetDZySr5APUaWXpDRviZjIah6La_lknHFR1F-QgWxD0ceDoc4-n49EjPIyNn3dDbmv6KVdn4YsTj1MM9vbJoznRo286w18nl8dHF4QnrJReYlalsmU-c4pXwzuTGi1yk4A3PeGlcAkK5rHJ5JUWeOmkzKyruIAdlROm9QVyTWPGFLNTjGr4R6o0GJbxwWmrpsc1oL5IKVAJOemsH5AfORtFvmaaI2XCeFt0UFf0UDcjudKWK3x3_xh977kwXssAtEvIetobxpCkQIgmMW_NE_qUPjwE6gtcB-dot_sv3ZBC8Q5w7IHrGLF46BIru2Zb69iZSdQf6PPQJauO_BrtJPvIgLxzKBfkWWWjvJ7CNmKctv0dzfwaZLf7W
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB1V7QE4lG9YyocRSJzSJrbjxMeqolqgqSptC71Fjj0RFVK2arIXbvy__qiOnWTptgLBNXac2B573sjj9wDeu7jCnGMVpdpgJI2poor8XlRLiVJh7nRQnisO1fREfj5NT9dgZ7wLQz_RUkttOMT_zS6Q7NAzr4gjrWdAoz13g5AI99HW7t5s3HqV4CFnkQJzGeXkuEaWxlvve19k21VfdAtg3syTvOZ49u_D0fKXQ77Jj-1FV23bnzfYHP-jTw9gcwChbLe3moewhs0juHeNmvAxzAqfgjtc0mTzms2CmETkpT4sOlbMaa-8_MWOAj9n07Kzhn0NOdrUMKFz5vCCfTNk3KwwXW_mT-Bk_-Px3jQaBBgiIxPZRS62itfCWZ1pJzKRoNM85ZW2MQpl09pmtRRZYqVJjai5xQyVFpVzmlBObMRTWG_mDT4H5nSOSjhhc5lLR2U6dyKuUcVopTNmAu9oNMphAbVlOBvnSdkPUTkM0QQ-jBNWnvdsHH-s-Xacz5IWjD8FMQ3OF21JgElQFJvF8i91eAjXCcpO4FlvA8vvSS9_R6h3AvmKdSwreMLu1ZLm7Hsg7vZkeuQh1It_6uwbuDM9Lg7Kg0-HX7bgLvfCwz6RkL-E9e5iga8IDXXV67ACrgBKTgdG
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB1VRargAJTPpVCMQOLkktiOEx-rwqoFtqq0LfQWOfZEVEjZqsleuPH_-FEdO9lVtxWIXmPHie0ZzxvN-A3AO59UWAiseGYscmVtxSuye7xWCpXGwptYeW5yqPdP1OfT7HS4xx3uwtBPtDRSG4P4QavPfT0wDKQf6HmoiqNcYEGjc_dOiNkFj2t3b7o4frUUMW-RnHPFCzJeC6bGG-8He-TaVXt0A2Rez5W8YnzGD-B4-dsx5-Tnzryrdtyva4yOt5zXQ7g_gFG220vPJqxh8wjuXaEofAzTSUjFHS5rslnNprGoBA8lPxx6NpnRmfnnNzuKPJ1Ny84a9i3matPAhNKZxwv23ZKQs4ntenF_AifjT8d7-3woxMCtSlXHfeK0qKV3Jjde5jJFb0QmKuMSlNpltctrJfPUKZtZWQuHOWojK-8NoZ3Eyqew3swafA7MmwK19NIVqlCe2kzhZVKjTtApb-0I3tJqlIMitWWMkYu07JeoHJZoBO8Xm1ae96wcf-35ZrGnJSlOiIbYBmfztiTgJMmbzRP1jz4iuu0EaUfwrJeD5fdUKINH6HcExYqELDsE4u7VlubsRyTwDqR6ZCn0i_-a7GvYOPo4Lr8eHH7Zgrsi1B8O-YTiJax3F3N8RaCoq7ajElwCut8JyQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Memorization+of+Strain-Induced+Moire%CC%81+Patterns+in+Vertical+van+der+Waals+Materials&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Dey%2C+Aditya&rft.au=Hasan%2C+Nazmul&rft.au=Wu%2C+Stephen+M.&rft.au=Askari%2C+Hesam&rft.date=2025-03-12&rft.pub=American+Chemical+Society&rft.issn=1944-8244&rft.eissn=1944-8252&rft.volume=17&rft.issue=10&rft.spage=16223&rft.epage=16233&rft_id=info:doi/10.1021%2Facsami.4c22462&rft.externalDocID=c55769434
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon