Memorization of Strain-Induced Moiré Patterns in Vertical van der Waals Materials
Twisting layers in van der Waals (vdW) materials have traditionally produced moiré patterns but often suffer from alignment issues and nonuniformity due to the sensitivity of twist angles. Applying strain alone can also generate these patterns, eliminating the need for interlayer rotation and enabl...
Saved in:
Published in | ACS applied materials & interfaces Vol. 17; no. 10; pp. 16223 - 16233 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
12.03.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Twisting layers in van der Waals (vdW) materials have traditionally produced moiré patterns but often suffer from alignment issues and nonuniformity due to the sensitivity of twist angles. Applying strain alone can also generate these patterns, eliminating the need for interlayer rotation and enabling controlled, reproducible moiré formation. We present the mechanistic principles governing the evolution of strain-induced moiré patterns in vertically stacked graphene through atomistic simulations. By analyzing local strain distribution, we identify a three-stage interlayer slippage process responsible for pattern formation. Our analyses reveal that these triangular moiré domains are stable and retained upon unloading, ensuring consistent and reproducible pattern formation even after strain removal. Additionally, we demonstrate that this strain history can be utilized to reapply load in a step-by-step process to achieve uniform moiré domains without requiring higher strain magnitudes. This approach provides a robust mechanism for designing wafer-scale quantum materials with uniform and reproducible moiré superlattices. |
---|---|
AbstractList | Twisting layers in van der Waals (vdW) materials have traditionally produced moiré patterns but often suffer from alignment issues and nonuniformity due to the sensitivity of twist angles. Applying strain alone can also generate these patterns, eliminating the need for interlayer rotation and enabling controlled, reproducible moiré formation. We present the mechanistic principles governing the evolution of strain-induced moiré patterns in vertically stacked graphene through atomistic simulations. By analyzing local strain distribution, we identify a three-stage interlayer slippage process responsible for pattern formation. Our analyses reveal that these triangular moiré domains are stable and retained upon unloading, ensuring consistent and reproducible pattern formation even after strain removal. Additionally, we demonstrate that this strain history can be utilized to reapply load in a step-by-step process to achieve uniform moiré domains without requiring higher strain magnitudes. This approach provides a robust mechanism for designing wafer-scale quantum materials with uniform and reproducible moiré superlattices. Twisting layers in van der Waals (vdW) materials have traditionally produced moiré patterns but often suffer from alignment issues and nonuniformity due to the sensitivity of twist angles. Applying strain alone can also generate these patterns, eliminating the need for interlayer rotation and enabling controlled, reproducible moiré formation. We present the mechanistic principles governing the evolution of strain-induced moiré patterns in vertically stacked graphene through atomistic simulations. By analyzing local strain distribution, we identify a three-stage interlayer slippage process responsible for pattern formation. Our analyses reveal that these triangular moiré domains are stable and retained upon unloading, ensuring consistent and reproducible pattern formation even after strain removal. Additionally, we demonstrate that this strain history can be utilized to reapply load in a step-by-step process to achieve uniform moiré domains without requiring higher strain magnitudes. This approach provides a robust mechanism for designing wafer-scale quantum materials with uniform and reproducible moiré superlattices.Twisting layers in van der Waals (vdW) materials have traditionally produced moiré patterns but often suffer from alignment issues and nonuniformity due to the sensitivity of twist angles. Applying strain alone can also generate these patterns, eliminating the need for interlayer rotation and enabling controlled, reproducible moiré formation. We present the mechanistic principles governing the evolution of strain-induced moiré patterns in vertically stacked graphene through atomistic simulations. By analyzing local strain distribution, we identify a three-stage interlayer slippage process responsible for pattern formation. Our analyses reveal that these triangular moiré domains are stable and retained upon unloading, ensuring consistent and reproducible pattern formation even after strain removal. Additionally, we demonstrate that this strain history can be utilized to reapply load in a step-by-step process to achieve uniform moiré domains without requiring higher strain magnitudes. This approach provides a robust mechanism for designing wafer-scale quantum materials with uniform and reproducible moiré superlattices. Twisting layers in van der Waals (vdW) materials have traditionally produced moiré patterns but often suffer from alignment issues and nonuniformity due to the sensitivity of twist angles. Applying strain alone can also generate these patterns, eliminating the need for interlayer rotation and enabling controlled, reproducible moiré formation. We present the mechanistic principles governing the evolution of strain-induced moiré patterns in vertically stacked graphene through atomistic simulations. By analyzing local strain distribution, we identify a three-stage interlayer slippage process responsible for pattern formation. Our analyses reveal that these triangular moiré domains are stable and retained upon unloading, ensuring consistent and reproducible pattern formation even after strain removal. Additionally, we demonstrate that this strain history can be utilized to reapply load in a step-by-step process to achieve uniform moiré domains without requiring higher strain magnitudes. This approach provides a robust mechanism for designing wafer-scale quantum materials with uniform and reproducible moiré superlattices. Twisting layers in van der Waals (vdW) materials have traditionally produced moiré patterns but often suffer from alignment issues and nonuniformity due to the sensitivity of twist angles. Applying strain alone can also generate these patterns, eliminating the need for interlayer rotation and enabling controlled, reproducible moiré formation. We present the mechanistic principles governing the evolution of strain-induced moiré patterns in vertically stacked graphene through atomistic simulations. By analyzing local strain distribution, we identify a three-stage interlayer slippage process responsible for pattern formation. Our analyses reveal that these triangular moiré domains are stable and retained upon unloading, ensuring consistent and reproducible pattern formation even after strain removal. Additionally, we demonstrate that this strain history can be utilized to reapply load in a step-by-step process to achieve uniform moiré domains without requiring higher strain magnitudes. This approach provides a robust mechanism for designing wafer-scale quantum materials with uniform and reproducible moiré superlattices. |
Author | Dey, Aditya Wu, Stephen M. Askari, Hesam Hasan, Nazmul |
AuthorAffiliation | Department of Electrical and Computer Engineering Department of Mechanical Engineering Department of Physics and Astronomy |
AuthorAffiliation_xml | – name: Department of Physics and Astronomy – name: Department of Electrical and Computer Engineering – name: Department of Mechanical Engineering |
Author_xml | – sequence: 1 givenname: Aditya orcidid: 0000-0002-5041-8662 surname: Dey fullname: Dey, Aditya email: adey2@ur.rochester.edu organization: Department of Mechanical Engineering – sequence: 2 givenname: Nazmul surname: Hasan fullname: Hasan, Nazmul organization: Department of Electrical and Computer Engineering – sequence: 3 givenname: Stephen M. orcidid: 0000-0001-6079-3354 surname: Wu fullname: Wu, Stephen M. organization: Department of Physics and Astronomy – sequence: 4 givenname: Hesam orcidid: 0000-0001-5562-1363 surname: Askari fullname: Askari, Hesam organization: Department of Mechanical Engineering |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40033932$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctrFTEUxoNU7EO3XUqWUpjbvGZiViKlL-hFoT6W4dzkTE2ZSWoyU6g7_z__KFPu7UUX4uockt_5-Pi-fbITU0RCDjlbcCb4MbgCY1goJ4TqxDOyx41SzVvRip3trtQu2S_llrFOCta-ILuKMSmNFHvkeoljyuEHTCFFmnp6PWUIsbmMfnbo6TKFjL9-0o8wTZhjoSHSL5in4GCg9xCpx0y_AgyFLqESoW4vyfO-Dny1mQfk89npp5OL5urD-eXJ-6sGFFdT45nrRC-9M9p4qSVHb6rvlXEMZefa3uleSc2dghZkLxxq7IxceW-M7hjIA_JurXs3r0b0DmP1Pti7HEbIDzZBsH__xPDN3qR7y7nhgpuuKrzZKOT0fcYy2TEUh8MAEdNcbI2LCa1a3f4f5VoqpjVTFX39p6-toafUK7BYAy6nUjL2W4Qz-1irXddqN7XWg6P1QX23t2nOseb6L_g3tGilKA |
Cites_doi | 10.1021/acsami.9b09259 10.1039/D1CP00681A 10.1038/s41567-020-01062-6 10.1038/s41563-020-00840-0 10.1063/1.4948357 10.1038/srep21516 10.1103/PhysRevB.78.113407 10.1016/j.jmps.2022.104831 10.1016/j.cpc.2020.107206 10.1007/s40820-020-00464-8 10.1088/1361-6528/aba39e 10.1021/acsaenm.2c00259 10.1016/j.ssc.2013.08.008 10.1063/5.0153935 10.1016/j.mtcomm.2020.101647 10.1038/s41563-019-0346-z 10.1063/5.0202712 10.1021/acsanm.0c02809 10.1021/acs.nanolett.2c02010 10.1073/pnas.1309394110 10.1021/acs.chemrev.0c01111 10.1002/adma.202004974 10.1088/2053-1583/ac4af9 10.1016/j.cpc.2021.108171 10.1038/s41928-023-01071-2 10.1021/nn3059828 10.1002/adma.202306312 10.1126/science.aav1910 10.1016/j.cpc.2018.03.016 10.1103/PhysRevLett.124.097601 10.1103/PhysRevLett.123.036401 10.1021/acs.nanolett.4c00382 10.1063/1.4966192 10.1103/PhysRevX.13.041007 10.1103/PhysRevLett.123.216803 10.1103/PhysRevResearch.6.023203 10.1115/1.4051306 10.1021/nn303328e 10.1088/2752-5724/ac681d 10.1016/j.commatsci.2024.113273 10.1007/s10409-023-23176-x 10.1103/PhysRevLett.127.247703 10.1038/s41563-021-00973-w 10.1088/0953-8984/21/39/395502 10.1021/acsami.3c19101 10.1002/adma.201902765 10.1038/s41586-021-04173-z 10.1103/PhysRevB.106.115410 10.1038/s41563-022-01361-8 10.1021/acsmaterialslett.1c00651 10.1038/s41467-019-10691-2 10.1038/s41586-020-2260-6 10.1021/acs.jpclett.2c02066 10.1021/acs.nanolett.2c01481 10.1103/PhysRevApplied.17.024013 10.1038/s41586-021-03252-5 10.1016/j.matt.2020.07.001 10.1002/smll.202311185 10.1063/5.0142406 10.1038/s41467-021-27042-9 10.1103/PhysRevLett.122.086402 10.1038/s41563-020-0708-6 10.1088/0957-4484/21/6/065711 10.1038/s41586-021-04121-x 10.1063/5.0197757 10.1038/s41565-020-0682-9 10.1088/2053-1583/abd3e7 10.1109/TED.2004.836648 10.1021/acsnano.3c09354 10.1088/2053-1583/ac08f2 |
ContentType | Journal Article |
Copyright | 2025 The Authors. Published by American Chemical Society 2025 The Authors. Published by American Chemical Society 2025 The Authors |
Copyright_xml | – notice: 2025 The Authors. Published by American Chemical Society – notice: 2025 The Authors. Published by American Chemical Society 2025 The Authors |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 5PM |
DOI | 10.1021/acsami.4c22462 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1944-8252 |
EndPage | 16233 |
ExternalDocumentID | PMC11912196 40033932 10_1021_acsami_4c22462 c55769434 |
Genre | Journal Article |
GroupedDBID | --- .K2 23M 4.4 53G 55A 5GY 5VS 5ZA 6J9 7~N AABXI AAHBH ABJNI ABMVS ABQRX ABUCX ACGFS ACS ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CUPRZ EBS ED~ F5P GGK GNL IH9 JG~ P2P RNS ROL UI2 VF5 VG9 W1F XKZ AAYXX ABBLG ABLBI CITATION NPM 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-a414t-d0c62f3dc979d3731ed9252b9c0e36c5fc7f4371c4a5a3f2ce7e693bdd99760a3 |
IEDL.DBID | ACS |
ISSN | 1944-8244 1944-8252 |
IngestDate | Thu Aug 21 18:39:12 EDT 2025 Wed Jul 02 04:54:13 EDT 2025 Fri Jul 11 10:32:15 EDT 2025 Thu Mar 20 02:21:24 EDT 2025 Tue Jul 01 05:18:31 EDT 2025 Thu Mar 13 04:02:00 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | interface mechanics strain-induced moiré patterns strain memorization machine-learned interatomic potential atomistic simulations strain-induced moiré patterns |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a414t-d0c62f3dc979d3731ed9252b9c0e36c5fc7f4371c4a5a3f2ce7e693bdd99760a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-5041-8662 0000-0001-5562-1363 0000-0001-6079-3354 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC11912196 |
PMID | 40033932 |
PQID | 3173407704 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_11912196 proquest_miscellaneous_3200274575 proquest_miscellaneous_3173407704 pubmed_primary_40033932 crossref_primary_10_1021_acsami_4c22462 acs_journals_10_1021_acsami_4c22462 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-03-12 |
PublicationDateYYYYMMDD | 2025-03-12 |
PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-12 day: 12 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS applied materials & interfaces |
PublicationTitleAlternate | ACS Appl. Mater. Interfaces |
PublicationYear | 2025 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref63/cit63 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref67/cit67 ref24/cit24 ref38/cit38 ref50/cit50 ref64/cit64 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref65/cit65 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref68/cit68 ref26/cit26 ref55/cit55 ref69/cit69 ref12/cit12 ref15/cit15 ref62/cit62 ref66/cit66 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref70/cit70 ref7/cit7 |
References_xml | – ident: ref57/cit57 doi: 10.1021/acsami.9b09259 – ident: ref44/cit44 doi: 10.1039/D1CP00681A – ident: ref7/cit7 doi: 10.1038/s41567-020-01062-6 – ident: ref4/cit4 doi: 10.1038/s41563-020-00840-0 – ident: ref70/cit70 doi: 10.1063/1.4948357 – ident: ref55/cit55 doi: 10.1038/srep21516 – ident: ref65/cit65 doi: 10.1103/PhysRevB.78.113407 – ident: ref49/cit49 doi: 10.1016/j.jmps.2022.104831 – ident: ref40/cit40 doi: 10.1016/j.cpc.2020.107206 – ident: ref3/cit3 doi: 10.1007/s40820-020-00464-8 – ident: ref22/cit22 doi: 10.1088/1361-6528/aba39e – ident: ref53/cit53 doi: 10.1021/acsaenm.2c00259 – ident: ref66/cit66 doi: 10.1016/j.ssc.2013.08.008 – ident: ref26/cit26 doi: 10.1063/5.0153935 – ident: ref43/cit43 doi: 10.1016/j.mtcomm.2020.101647 – ident: ref1/cit1 doi: 10.1038/s41563-019-0346-z – ident: ref68/cit68 doi: 10.1063/5.0202712 – ident: ref42/cit42 doi: 10.1021/acsanm.0c02809 – ident: ref37/cit37 doi: 10.1021/acs.nanolett.2c02010 – ident: ref54/cit54 doi: 10.1073/pnas.1309394110 – ident: ref33/cit33 doi: 10.1021/acs.chemrev.0c01111 – ident: ref20/cit20 doi: 10.1002/adma.202004974 – ident: ref63/cit63 doi: 10.1088/2053-1583/ac4af9 – ident: ref47/cit47 doi: 10.1016/j.cpc.2021.108171 – ident: ref31/cit31 doi: 10.1038/s41928-023-01071-2 – ident: ref51/cit51 doi: 10.1021/nn3059828 – ident: ref69/cit69 doi: 10.1002/adma.202306312 – ident: ref8/cit8 doi: 10.1126/science.aav1910 – ident: ref39/cit39 doi: 10.1016/j.cpc.2018.03.016 – ident: ref5/cit5 doi: 10.1103/PhysRevLett.124.097601 – ident: ref11/cit11 doi: 10.1103/PhysRevLett.123.036401 – ident: ref59/cit59 doi: 10.1021/acs.nanolett.4c00382 – ident: ref34/cit34 doi: 10.1063/1.4966192 – ident: ref52/cit52 doi: 10.1103/PhysRevX.13.041007 – ident: ref12/cit12 doi: 10.1103/PhysRevLett.123.216803 – ident: ref67/cit67 doi: 10.1103/PhysRevResearch.6.023203 – ident: ref30/cit30 doi: 10.1115/1.4051306 – ident: ref50/cit50 doi: 10.1021/nn303328e – ident: ref32/cit32 doi: 10.1088/2752-5724/ac681d – ident: ref45/cit45 doi: 10.1016/j.commatsci.2024.113273 – ident: ref58/cit58 doi: 10.1007/s10409-023-23176-x – ident: ref10/cit10 doi: 10.1103/PhysRevLett.127.247703 – ident: ref61/cit61 doi: 10.1038/s41563-021-00973-w – ident: ref41/cit41 doi: 10.1088/0953-8984/21/39/395502 – ident: ref24/cit24 doi: 10.1021/acsami.3c19101 – ident: ref35/cit35 doi: 10.1002/adma.201902765 – ident: ref19/cit19 doi: 10.1038/s41586-021-04173-z – ident: ref36/cit36 doi: 10.1103/PhysRevB.106.115410 – ident: ref21/cit21 doi: 10.1038/s41563-022-01361-8 – ident: ref48/cit48 doi: 10.1021/acsmaterialslett.1c00651 – ident: ref23/cit23 doi: 10.1038/s41467-019-10691-2 – ident: ref6/cit6 doi: 10.1038/s41586-020-2260-6 – ident: ref56/cit56 doi: 10.1021/acs.jpclett.2c02066 – ident: ref13/cit13 doi: 10.1021/acs.nanolett.2c01481 – ident: ref46/cit46 doi: 10.1103/PhysRevApplied.17.024013 – ident: ref62/cit62 doi: 10.1038/s41586-021-03252-5 – ident: ref2/cit2 doi: 10.1016/j.matt.2020.07.001 – ident: ref25/cit25 doi: 10.1002/smll.202311185 – ident: ref27/cit27 doi: 10.1063/5.0142406 – ident: ref15/cit15 doi: 10.1038/s41467-021-27042-9 – ident: ref14/cit14 doi: 10.1103/PhysRevLett.122.086402 – ident: ref16/cit16 doi: 10.1038/s41563-020-0708-6 – ident: ref64/cit64 doi: 10.1088/0957-4484/21/6/065711 – ident: ref9/cit9 doi: 10.1038/s41586-021-04121-x – ident: ref38/cit38 doi: 10.1063/5.0197757 – ident: ref17/cit17 doi: 10.1038/s41565-020-0682-9 – ident: ref18/cit18 doi: 10.1088/2053-1583/abd3e7 – ident: ref28/cit28 doi: 10.1109/TED.2004.836648 – ident: ref60/cit60 doi: 10.1021/acsnano.3c09354 – ident: ref29/cit29 doi: 10.1088/2053-1583/ac08f2 |
SSID | ssj0063205 |
Score | 2.452508 |
Snippet | Twisting layers in van der Waals (vdW) materials have traditionally produced moiré patterns but often suffer from alignment issues and nonuniformity due to... Twisting layers in van der Waals (vdW) materials have traditionally produced moiré patterns but often suffer from alignment issues and nonuniformity due to the... Twisting layers in van der Waals (vdW) materials have traditionally produced moiré patterns but often suffer from alignment issues and nonuniformity due to the... |
SourceID | pubmedcentral proquest pubmed crossref acs |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 16223 |
SubjectTerms | design domain graphene materials strains Surfaces, Interfaces, and Applications van der Waals forces |
Title | Memorization of Strain-Induced Moiré Patterns in Vertical van der Waals Materials |
URI | http://dx.doi.org/10.1021/acsami.4c22462 https://www.ncbi.nlm.nih.gov/pubmed/40033932 https://www.proquest.com/docview/3173407704 https://www.proquest.com/docview/3200274575 https://pubmed.ncbi.nlm.nih.gov/PMC11912196 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYquJRDeZS2y6MyaiVOhsR2HPuIEAghLUJaKNwix54IhJStSPbCjf_Hj2LsZIFl1cfZTiLbY883mfH3EfLTJyVoDiXLjAUmrS1ZiX6PVVKCVKC9icpzwzN1cilPr7Pr1_8d7zP4PN23rglSONIF6jM8bBe50nkIsw4OR9MzVwkeixUxIpdMo8ea0jPOPR-ckGtmndAcsnxfIPnG4xwvd_RHTSQqDIUmd3uTttxzD_M0jv8czAr51MNOetDZySr5APUaWXpDRviZjIah6La_lknHFR1F-QgWxD0ceDoc4-n49EjPIyNn3dDbmv6KVdn4YsTj1MM9vbJoznRo286w18nl8dHF4QnrJReYlalsmU-c4pXwzuTGi1yk4A3PeGlcAkK5rHJ5JUWeOmkzKyruIAdlROm9QVyTWPGFLNTjGr4R6o0GJbxwWmrpsc1oL5IKVAJOemsH5AfORtFvmaaI2XCeFt0UFf0UDcjudKWK3x3_xh977kwXssAtEvIetobxpCkQIgmMW_NE_qUPjwE6gtcB-dot_sv3ZBC8Q5w7IHrGLF46BIru2Zb69iZSdQf6PPQJauO_BrtJPvIgLxzKBfkWWWjvJ7CNmKctv0dzfwaZLf7W |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB1V7QE4lG9YyocRSJzSJrbjxMeqolqgqSptC71Fjj0RFVK2arIXbvy__qiOnWTptgLBNXac2B573sjj9wDeu7jCnGMVpdpgJI2poor8XlRLiVJh7nRQnisO1fREfj5NT9dgZ7wLQz_RUkttOMT_zS6Q7NAzr4gjrWdAoz13g5AI99HW7t5s3HqV4CFnkQJzGeXkuEaWxlvve19k21VfdAtg3syTvOZ49u_D0fKXQ77Jj-1FV23bnzfYHP-jTw9gcwChbLe3moewhs0juHeNmvAxzAqfgjtc0mTzms2CmETkpT4sOlbMaa-8_MWOAj9n07Kzhn0NOdrUMKFz5vCCfTNk3KwwXW_mT-Bk_-Px3jQaBBgiIxPZRS62itfCWZ1pJzKRoNM85ZW2MQpl09pmtRRZYqVJjai5xQyVFpVzmlBObMRTWG_mDT4H5nSOSjhhc5lLR2U6dyKuUcVopTNmAu9oNMphAbVlOBvnSdkPUTkM0QQ-jBNWnvdsHH-s-Xacz5IWjD8FMQ3OF21JgElQFJvF8i91eAjXCcpO4FlvA8vvSS9_R6h3AvmKdSwreMLu1ZLm7Hsg7vZkeuQh1It_6uwbuDM9Lg7Kg0-HX7bgLvfCwz6RkL-E9e5iga8IDXXV67ACrgBKTgdG |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB1VRargAJTPpVCMQOLkktiOEx-rwqoFtqq0LfQWOfZEVEjZqsleuPH_-FEdO9lVtxWIXmPHie0ZzxvN-A3AO59UWAiseGYscmVtxSuye7xWCpXGwptYeW5yqPdP1OfT7HS4xx3uwtBPtDRSG4P4QavPfT0wDKQf6HmoiqNcYEGjc_dOiNkFj2t3b7o4frUUMW-RnHPFCzJeC6bGG-8He-TaVXt0A2Rez5W8YnzGD-B4-dsx5-Tnzryrdtyva4yOt5zXQ7g_gFG220vPJqxh8wjuXaEofAzTSUjFHS5rslnNprGoBA8lPxx6NpnRmfnnNzuKPJ1Ny84a9i3matPAhNKZxwv23ZKQs4ntenF_AifjT8d7-3woxMCtSlXHfeK0qKV3Jjde5jJFb0QmKuMSlNpltctrJfPUKZtZWQuHOWojK-8NoZ3Eyqew3swafA7MmwK19NIVqlCe2kzhZVKjTtApb-0I3tJqlIMitWWMkYu07JeoHJZoBO8Xm1ae96wcf-35ZrGnJSlOiIbYBmfztiTgJMmbzRP1jz4iuu0EaUfwrJeD5fdUKINH6HcExYqELDsE4u7VlubsRyTwDqR6ZCn0i_-a7GvYOPo4Lr8eHH7Zgrsi1B8O-YTiJax3F3N8RaCoq7ajElwCut8JyQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Memorization+of+Strain-Induced+Moire%CC%81+Patterns+in+Vertical+van+der+Waals+Materials&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Dey%2C+Aditya&rft.au=Hasan%2C+Nazmul&rft.au=Wu%2C+Stephen+M.&rft.au=Askari%2C+Hesam&rft.date=2025-03-12&rft.pub=American+Chemical+Society&rft.issn=1944-8244&rft.eissn=1944-8252&rft.volume=17&rft.issue=10&rft.spage=16223&rft.epage=16233&rft_id=info:doi/10.1021%2Facsami.4c22462&rft.externalDocID=c55769434 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon |