Memorization of Strain-Induced Moiré Patterns in Vertical van der Waals Materials

Twisting layers in van der Waals (vdW) materials have traditionally produced moiré patterns but often suffer from alignment issues and nonuniformity due to the sensitivity of twist angles. Applying strain alone can also generate these patterns, eliminating the need for interlayer rotation and enabl...

Full description

Saved in:
Bibliographic Details
Published inACS applied materials & interfaces Vol. 17; no. 10; pp. 16223 - 16233
Main Authors Dey, Aditya, Hasan, Nazmul, Wu, Stephen M., Askari, Hesam
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 12.03.2025
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Twisting layers in van der Waals (vdW) materials have traditionally produced moiré patterns but often suffer from alignment issues and nonuniformity due to the sensitivity of twist angles. Applying strain alone can also generate these patterns, eliminating the need for interlayer rotation and enabling controlled, reproducible moiré formation. We present the mechanistic principles governing the evolution of strain-induced moiré patterns in vertically stacked graphene through atomistic simulations. By analyzing local strain distribution, we identify a three-stage interlayer slippage process responsible for pattern formation. Our analyses reveal that these triangular moiré domains are stable and retained upon unloading, ensuring consistent and reproducible pattern formation even after strain removal. Additionally, we demonstrate that this strain history can be utilized to reapply load in a step-by-step process to achieve uniform moiré domains without requiring higher strain magnitudes. This approach provides a robust mechanism for designing wafer-scale quantum materials with uniform and reproducible moiré superlattices.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1944-8244
1944-8252
1944-8252
DOI:10.1021/acsami.4c22462