Aggregation Control of Robust Water-Soluble Zinc(II) Phthalocyanine-Based Photosensitizers
A water-soluble zinc phthalocyanine (ZnPc) complex with four negatively charged electron-withdrawing sulfonic acid substituents at the nonperipheral positions (α-ZnTSPc) is found to have a high singlet oxygen (1O2) quantum yield and exhibits high photostability. The formation of aggregates is hinder...
Saved in:
Published in | Langmuir Vol. 32; no. 45; pp. 11980 - 11985 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
15.11.2016
|
Online Access | Get full text |
Cover
Loading…
Summary: | A water-soluble zinc phthalocyanine (ZnPc) complex with four negatively charged electron-withdrawing sulfonic acid substituents at the nonperipheral positions (α-ZnTSPc) is found to have a high singlet oxygen (1O2) quantum yield and exhibits high photostability. The formation of aggregates is hindered and the highest occupied molecular orbital is significantly stabilized, making α-ZnTSPc potentially suitable for its use as a photosensitizer for photodynamic therapy and photoimmunotherapy. Atomic force microscopy (AFM) reveals that mixtures of the negatively charged α-ZnTSPc complex with a similar positively charged ZnPc were found to result in the self-assembly of one-dimensional accordion-like fibers. Supramolecular fibers can be formed in aqueous solutions through intermolecular electrostatic and donor–acceptor interactions between the two water-soluble ZnPcs. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0743-7463 1520-5827 |
DOI: | 10.1021/acs.langmuir.6b03552 |