Immunogenic peptides corresponding to the dominant antigenic region alanine-597 to cysteine-619 in the transmembrane protein of simian immunodeficiency virus have a propensity to fold in aqueous solution

Two synthetic peptides corresponding to the N- and C-terminal halves of a 23 amino acid sequence representing an immunodominant domain of the simian immunodeficiency virus of macaque origin (SIVmac) were examined for conformational preferences in aqueous solution by proton nuclear magnetic resonance...

Full description

Saved in:
Bibliographic Details
Published inBiochemistry (Easton) Vol. 31; no. 5; pp. 1458 - 1463
Main Authors Dyson, H. Jane, Norrby, Erling, Hoey, Kenway, Parks, D. Elliot, Lerner, Richard A, Wright, Peter E
Format Journal Article
LanguageEnglish
Published Washington, DC American Chemical Society 11.02.1992
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Two synthetic peptides corresponding to the N- and C-terminal halves of a 23 amino acid sequence representing an immunodominant domain of the simian immunodeficiency virus of macaque origin (SIVmac) were examined for conformational preferences in aqueous solution by proton nuclear magnetic resonance methods. The two constituent peptides, termed A12-7 (Ala597-Ile-Glu-Lys-Tyr-Leu-Glu-Asp-Gln-Ala-Gln607) and A12-9 (Leu608-Asn-Ala-Trp-Gly-Cys-Ala-Phe-Arg-Gln-Val-Ser619), were found to contain a considerable conformational preference for states in which the backbone phi and psi angles populate the alpha region of the Ramachandran plot. Further, for peptide A12-9, the types and intensities of the nuclear Overhauser effect (NOE) connectivities between protons in the polypeptide backbone suggest that these states appear to include helical turns. The temperature dependence of the amide proton chemical shifts indicates that some degree of intramolecular hydrogen bonding occurs in these peptides. These results are consistent with a model in which immunogenic peptides which induce antibodies reactive with the intact protein from which the peptide sequence was derived contain conformational preferences in water solution for states other than the extended-chain forms typically found in "random coil" peptides.
Bibliography:ark:/67375/TPS-9J20MP1W-Q
istex:4920E81BB3CB6B0C92239BEC13E26EDD2A1F3746
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0006-2960
1520-4995
DOI:10.1021/bi00120a024