Rapid Stress Relaxation and Moderate Temperature of Malleability Enabled by the Synergy of Disulfide Metathesis and Carboxylate Transesterification in Epoxy Vitrimers

Vitrimers make up a class of polymeric materials combining the advantages of thermosets and thermoplastics, because they can be reprocessed while being at the same time permanently cross-linked. However, a long heating duration or an elevated temperature is necessary for most vitrimers to relax the...

Full description

Saved in:
Bibliographic Details
Published inACS macro letters Vol. 8; no. 3; pp. 255 - 260
Main Authors Chen, Mao, Zhou, Lin, Wu, Yeping, Zhao, Xiuli, Zhang, Yongjun
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 19.03.2019
Online AccessGet full text

Cover

Loading…
More Information
Summary:Vitrimers make up a class of polymeric materials combining the advantages of thermosets and thermoplastics, because they can be reprocessed while being at the same time permanently cross-linked. However, a long heating duration or an elevated temperature is necessary for most vitrimers to relax the stress from deformation and exhibit malleability. Herein, a disulfide-containing carboxylic acid is applied as a curing agent to synthesize epoxy vitrimers with simultaneous disulfide metathesis and carboxylate transesterification. The insoluble networks exhibit rapid stress relaxation and have relaxation times ranging from 1.5 s (200 °C) to 5500 s (60 °C), while the temperature of malleability is as low as 65 °C. Moreover, this vitrimer can be efficiently reprocessed at 100 °C in 1 h with full recovery of mechanical strength for at least four cycles. Additionally, such a material is simply synthesized from commercially available chemicals and may have potential applications in the electronics industry where a high temperature is not allowed.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2161-1653
2161-1653
DOI:10.1021/acsmacrolett.9b00015