Core–Shell Heterojunction of Silicon Nanowire Arrays and Carbon Quantum Dots for Photovoltaic Devices and Self-Driven Photodetectors

Silicon nanostructure-based solar cells have lately intrigued intensive interest because of their promising potential in next-generation solar energy conversion devices. Herein, we report a silicon nanowire (SiNW) array/carbon quantum dot (CQD) core–shell heterojunction photovoltaic device by direct...

Full description

Saved in:
Bibliographic Details
Published inACS nano Vol. 8; no. 4; pp. 4015 - 4022
Main Authors Xie, Chao, Nie, Biao, Zeng, Longhui, Liang, Feng-Xia, Wang, Ming-Zheng, Luo, Linbao, Feng, Mei, Yu, Yongqiang, Wu, Chun-Yan, Wu, Yucheng, Yu, Shu-Hong
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 22.04.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Silicon nanostructure-based solar cells have lately intrigued intensive interest because of their promising potential in next-generation solar energy conversion devices. Herein, we report a silicon nanowire (SiNW) array/carbon quantum dot (CQD) core–shell heterojunction photovoltaic device by directly coating Ag-assisted chemical-etched SiNW arrays with CQDs. The heterojunction with a barrier height of 0.75 eV exhibited excellent rectifying behavior with a rectification ratio of 103 at ±0.8 V in the dark and power conversion efficiency (PCE) as high as 9.10% under AM 1.5G irradiation. It is believed that such a high PCE comes from the improved optical absorption as well as the optimized carrier transfer and collection capability. Furthermore, the heterojunction could function as a high-performance self-driven visible light photodetector operating in a wide switching wavelength with good stability, high sensitivity, and fast response speed. It is expected that the present SiNW array/CQD core–shell heterojunction device could find potential applications in future high-performance optoelectronic devices.
AbstractList Silicon nanostructure-based solar cells have lately intrigued intensive interest because of their promising potential in next-generation solar energy conversion devices. Herein, we report a silicon nanowire (SiNW) array/carbon quantum dot (CQD) core-shell heterojunction photovoltaic device by directly coating Ag-assisted chemical-etched SiNW arrays with CQDs. The heterojunction with a barrier height of 0.75 eV exhibited excellent rectifying behavior with a rectification ratio of 10(3) at ±0.8 V in the dark and power conversion efficiency (PCE) as high as 9.10% under AM 1.5G irradiation. It is believed that such a high PCE comes from the improved optical absorption as well as the optimized carrier transfer and collection capability. Furthermore, the heterojunction could function as a high-performance self-driven visible light photodetector operating in a wide switching wavelength with good stability, high sensitivity, and fast response speed. It is expected that the present SiNW array/CQD core-shell heterojunction device could find potential applications in future high-performance optoelectronic devices.
Silicon nanostructure-based solar cells have lately intrigued intensive interest because of their promising potential in next-generation solar energy conversion devices. Herein, we report a silicon nanowire (SiNW) array/carbon quantum dot (CQD) core–shell heterojunction photovoltaic device by directly coating Ag-assisted chemical-etched SiNW arrays with CQDs. The heterojunction with a barrier height of 0.75 eV exhibited excellent rectifying behavior with a rectification ratio of 103 at ±0.8 V in the dark and power conversion efficiency (PCE) as high as 9.10% under AM 1.5G irradiation. It is believed that such a high PCE comes from the improved optical absorption as well as the optimized carrier transfer and collection capability. Furthermore, the heterojunction could function as a high-performance self-driven visible light photodetector operating in a wide switching wavelength with good stability, high sensitivity, and fast response speed. It is expected that the present SiNW array/CQD core–shell heterojunction device could find potential applications in future high-performance optoelectronic devices.
Silicon nanostructure-based solar cells have lately intrigued intensive interest because of their promising potential in next-generation solar energy conversion devices. Herein, we report a silicon nanowire (SiNW) array/carbon quantum dot (CQD) core-shell heterojunction photovoltaic device by directly coating Ag-assisted chemical-etched SiNW arrays with CQDs. The heterojunction with a barrier height of 0.75 eV exhibited excellent rectifying behavior with a rectification ratio of 10(3) at ±0.8 V in the dark and power conversion efficiency (PCE) as high as 9.10% under AM 1.5G irradiation. It is believed that such a high PCE comes from the improved optical absorption as well as the optimized carrier transfer and collection capability. Furthermore, the heterojunction could function as a high-performance self-driven visible light photodetector operating in a wide switching wavelength with good stability, high sensitivity, and fast response speed. It is expected that the present SiNW array/CQD core-shell heterojunction device could find potential applications in future high-performance optoelectronic devices.Silicon nanostructure-based solar cells have lately intrigued intensive interest because of their promising potential in next-generation solar energy conversion devices. Herein, we report a silicon nanowire (SiNW) array/carbon quantum dot (CQD) core-shell heterojunction photovoltaic device by directly coating Ag-assisted chemical-etched SiNW arrays with CQDs. The heterojunction with a barrier height of 0.75 eV exhibited excellent rectifying behavior with a rectification ratio of 10(3) at ±0.8 V in the dark and power conversion efficiency (PCE) as high as 9.10% under AM 1.5G irradiation. It is believed that such a high PCE comes from the improved optical absorption as well as the optimized carrier transfer and collection capability. Furthermore, the heterojunction could function as a high-performance self-driven visible light photodetector operating in a wide switching wavelength with good stability, high sensitivity, and fast response speed. It is expected that the present SiNW array/CQD core-shell heterojunction device could find potential applications in future high-performance optoelectronic devices.
Silicon nanostructure-based solar cells have lately intrigued intensive interest because of their promising potential in next-generation solar energy conversion devices. Herein, we report a silicon nanowire (SiNW) array/carbon quantum dot (CQD) core-shell heterojunction photovoltaic device by directly coating Ag-assisted chemical-etched SiNW arrays with CQDs. The heterojunction with a barrier height of 0.75 eV exhibited excellent rectifying behavior with a rectification ratio of 10 super(3) at plus or minus 0.8 V in the dark and power conversion efficiency (PCE) as high as 9.10% under AM 1.5G irradiation. It is believed that such a high PCE comes from the improved optical absorption as well as the optimized carrier transfer and collection capability. Furthermore, the heterojunction could function as a high-performance self-driven visible light photodetector operating in a wide switching wavelength with good stability, high sensitivity, and fast response speed. It is expected that the present SiNW array/CQD core-shell heterojunction device could find potential applications in future high-performance optoelectronic devices. Keywords: silicon nanowire array; carbon quantum dots; surface passivation; relative balance; barrier height
Author Nie, Biao
Luo, Linbao
Yu, Yongqiang
Xie, Chao
Liang, Feng-Xia
Zeng, Longhui
Wu, Chun-Yan
Wang, Ming-Zheng
Feng, Mei
Wu, Yucheng
Yu, Shu-Hong
AuthorAffiliation Department of Chemistry
University of Science and Technology of China
School of Electronic Science and Applied Physics
School of Materials Science and Engineering
Hefei University of Technology
AuthorAffiliation_xml – name: University of Science and Technology of China
– name: Hefei University of Technology
– name: Department of Chemistry
– name: School of Materials Science and Engineering
– name: School of Electronic Science and Applied Physics
Author_xml – sequence: 1
  givenname: Chao
  surname: Xie
  fullname: Xie, Chao
– sequence: 2
  givenname: Biao
  surname: Nie
  fullname: Nie, Biao
– sequence: 3
  givenname: Longhui
  surname: Zeng
  fullname: Zeng, Longhui
– sequence: 4
  givenname: Feng-Xia
  surname: Liang
  fullname: Liang, Feng-Xia
– sequence: 5
  givenname: Ming-Zheng
  surname: Wang
  fullname: Wang, Ming-Zheng
– sequence: 6
  givenname: Linbao
  surname: Luo
  fullname: Luo, Linbao
  email: luolb@hfut.edu.cn, ycwu@hfut.edu.cn, shyu@ustc.edu.cn
– sequence: 7
  givenname: Mei
  surname: Feng
  fullname: Feng, Mei
– sequence: 8
  givenname: Yongqiang
  surname: Yu
  fullname: Yu, Yongqiang
– sequence: 9
  givenname: Chun-Yan
  surname: Wu
  fullname: Wu, Chun-Yan
– sequence: 10
  givenname: Yucheng
  surname: Wu
  fullname: Wu, Yucheng
  email: luolb@hfut.edu.cn, ycwu@hfut.edu.cn, shyu@ustc.edu.cn
– sequence: 11
  givenname: Shu-Hong
  surname: Yu
  fullname: Yu, Shu-Hong
  email: luolb@hfut.edu.cn, ycwu@hfut.edu.cn, shyu@ustc.edu.cn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24665986$$D View this record in MEDLINE/PubMed
BookMark eNqN0b1OHDEQB3ALgfgueIHIDVJSLNh7a3tdorskREIBdCDRrbz2WPi0ZxPbexFdqrxA3jBPkj0tXBFRUHkk__62ZuYAbfvgAaETSs4oKem594xQQuhiC-1TOeEFqfnD9qZmdA8dpLQghIla8F20V1acM1nzffR7GiL8_fVn_ghdhy8hQwyL3uvsgsfB4rnrnB7K78qHny4CvohRPSesvMFTFdvh6rZXPvdLPAs5YRsivnkMOaxCl5XTeAYrp2EMzKGzxSy6FfgRmeE_nUNMR2jHqi7B8ct5iO6_fL6bXhZX11-_TS-uClXRKheiMtJI2ZbGGiYZryUx0tpKWiYoLWuiJ4K3xrJKMFGCJEqVVrTMaAUTyqrJIfo4vvsUw48eUm6WLumhdeUh9KmhgpeEUVK_gzJacyolX9MPL7Rvl2Cap-iWKj43r2MewKcR6BhSimA3hJJmvcJms8LBnv9ntctqvY8cleveTJyOCaVTswh99MMI33D_ACCqq4U
CitedBy_id crossref_primary_10_1021_acsami_6b06531
crossref_primary_10_1002_smll_202400107
crossref_primary_10_1039_C6NR07681E
crossref_primary_10_1039_C4RA16529B
crossref_primary_10_3390_s21186146
crossref_primary_10_1007_s11664_021_09182_2
crossref_primary_10_3390_coatings11020232
crossref_primary_10_1088_0957_4484_27_8_085605
crossref_primary_10_1021_acsomega_9b00621
crossref_primary_10_1002_adom_201900023
crossref_primary_10_3390_mi11090842
crossref_primary_10_1021_acsbiomaterials_0c00982
crossref_primary_10_1016_j_physe_2020_114147
crossref_primary_10_1038_s41377_022_00777_w
crossref_primary_10_1016_j_jcat_2016_11_028
crossref_primary_10_1016_j_optmat_2021_111118
crossref_primary_10_1021_acsami_7b14250
crossref_primary_10_1016_j_carbon_2016_08_058
crossref_primary_10_1063_1_5083902
crossref_primary_10_1063_5_0032036
crossref_primary_10_1002_advs_201600018
crossref_primary_10_1016_j_nantod_2018_02_009
crossref_primary_10_1002_agt2_108
crossref_primary_10_1021_acsomega_8b00303
crossref_primary_10_1021_acsaelm_9b00705
crossref_primary_10_1021_acs_jpclett_8b00266
crossref_primary_10_1016_j_solmat_2024_112812
crossref_primary_10_1039_C4CS00136B
crossref_primary_10_1016_j_apsusc_2023_157094
crossref_primary_10_1016_j_mtener_2023_101375
crossref_primary_10_1038_srep38252
crossref_primary_10_1016_j_electacta_2018_04_052
crossref_primary_10_1039_C8TC06383D
crossref_primary_10_3866_PKU_WHXB202310004
crossref_primary_10_1016_j_jphotochemrev_2020_100354
crossref_primary_10_1016_j_mtchem_2022_101125
crossref_primary_10_1002_er_6654
crossref_primary_10_1039_C8TB03233E
crossref_primary_10_1039_D0MA00108B
crossref_primary_10_1016_j_jallcom_2017_07_338
crossref_primary_10_1021_acsomega_7b02082
crossref_primary_10_1016_j_jallcom_2014_07_171
crossref_primary_10_1016_j_saa_2018_12_024
crossref_primary_10_1039_C5CP03498A
crossref_primary_10_1088_2053_1591_aa8a37
crossref_primary_10_1016_j_mssp_2023_107560
crossref_primary_10_1002_adom_202403097
crossref_primary_10_1021_acsami_9b12827
crossref_primary_10_1021_acs_nanolett_1c01244
crossref_primary_10_1021_acsami_5b09492
crossref_primary_10_1155_2017_7029731
crossref_primary_10_1063_1_4968794
crossref_primary_10_1364_OE_24_0A1075
crossref_primary_10_3390_en16186456
crossref_primary_10_1016_j_apmt_2017_12_013
crossref_primary_10_1039_C6RA20467H
crossref_primary_10_1021_acs_jpclett_8b01255
crossref_primary_10_1016_j_apsusc_2016_01_278
crossref_primary_10_1039_C7RA01430A
crossref_primary_10_1016_j_mtphys_2021_100398
crossref_primary_10_1039_C8CS00750K
crossref_primary_10_1016_j_apsusc_2021_149256
crossref_primary_10_1088_0957_4484_28_1_012001
crossref_primary_10_3390_cryst11121479
crossref_primary_10_1021_acsami_7b06620
crossref_primary_10_1016_j_jenvman_2019_109486
crossref_primary_10_1088_1361_6528_ab5889
crossref_primary_10_1021_acs_chemrev_8b00599
crossref_primary_10_1063_1_4936174
crossref_primary_10_1002_adfm_202214996
crossref_primary_10_1021_acsami_8b08387
crossref_primary_10_1039_C8EE02744G
crossref_primary_10_1021_acsnano_3c05178
crossref_primary_10_1002_inf2_12014
crossref_primary_10_1021_acsnano_2c10705
crossref_primary_10_1039_C5CP04942C
crossref_primary_10_1039_C8CC05860A
crossref_primary_10_1515_ntrev_2024_0038
crossref_primary_10_1039_C6TC04029B
crossref_primary_10_1016_j_nanoen_2014_07_003
crossref_primary_10_1038_srep12604
crossref_primary_10_1039_C9TC00797K
crossref_primary_10_1002_adfm_202316430
crossref_primary_10_1016_j_optmat_2020_109760
crossref_primary_10_1515_nanoph_2016_0024
crossref_primary_10_1109_JSEN_2022_3211846
crossref_primary_10_1039_C5NR07901B
crossref_primary_10_1016_j_mssp_2024_109212
crossref_primary_10_1021_acsphotonics_1c00015
crossref_primary_10_1016_j_nanoen_2015_09_005
crossref_primary_10_1007_s11468_015_0091_3
crossref_primary_10_1039_C8NR01553H
crossref_primary_10_1007_s10854_024_14094_y
crossref_primary_10_1039_C7EN00179G
crossref_primary_10_1002_adom_202001708
crossref_primary_10_1039_C7SE00158D
crossref_primary_10_1109_LSENS_2019_2926744
crossref_primary_10_1002_pssr_202000537
crossref_primary_10_3389_fenrg_2021_666534
crossref_primary_10_1021_acsanm_9b00860
crossref_primary_10_1016_j_electacta_2015_03_095
crossref_primary_10_1002_smll_202102884
crossref_primary_10_1002_advs_201900522
crossref_primary_10_1038_s41378_022_00410_1
crossref_primary_10_1016_j_jallcom_2023_169276
crossref_primary_10_1021_acs_jpcc_8b09308
crossref_primary_10_1002_smll_202207181
crossref_primary_10_1007_s00339_023_06649_3
crossref_primary_10_1016_j_apcatb_2015_06_056
crossref_primary_10_1021_acsnano_7b05472
crossref_primary_10_1016_j_sna_2021_112625
crossref_primary_10_1039_C8NR04004D
crossref_primary_10_1002_admt_202200863
crossref_primary_10_1002_adfm_201705970
crossref_primary_10_1016_j_jpowsour_2017_09_055
crossref_primary_10_1016_j_matchemphys_2019_122158
crossref_primary_10_1021_acsanm_1c02505
crossref_primary_10_1039_C9TC01730E
crossref_primary_10_1021_acsnano_9b00688
crossref_primary_10_3390_electronics8060678
crossref_primary_10_1039_C5NR07494K
crossref_primary_10_1039_C6TC03856E
crossref_primary_10_1016_j_nanoen_2015_05_008
crossref_primary_10_1039_C5TC00449G
crossref_primary_10_1038_s41427_018_0035_4
crossref_primary_10_1016_j_solener_2020_12_022
crossref_primary_10_1021_acsami_8b20182
crossref_primary_10_1021_am505640t
crossref_primary_10_1016_j_rechem_2024_101322
crossref_primary_10_1016_j_solmat_2017_07_042
crossref_primary_10_1039_C4RA11931B
crossref_primary_10_1016_j_optmat_2020_109837
crossref_primary_10_1002_advs_201500002
crossref_primary_10_1002_admi_201900923
crossref_primary_10_1016_j_jallcom_2018_05_190
crossref_primary_10_1016_j_materresbull_2023_112262
crossref_primary_10_1002_adom_201700081
crossref_primary_10_1007_s00604_019_3303_2
crossref_primary_10_1021_acsaelm_3c00156
crossref_primary_10_1088_1361_6528_acb320
crossref_primary_10_1002_smtd_202401240
crossref_primary_10_1016_j_mseb_2023_116808
crossref_primary_10_1021_acssuschemeng_9b04817
crossref_primary_10_1016_j_solener_2022_01_063
crossref_primary_10_1016_j_carbon_2024_118842
crossref_primary_10_1109_JPHOT_2024_3381440
crossref_primary_10_1002_smll_201702107
crossref_primary_10_1016_j_materresbull_2017_07_038
crossref_primary_10_1088_2043_6254_ab9193
crossref_primary_10_1039_C5NR08791K
crossref_primary_10_1007_s10854_023_11399_2
crossref_primary_10_1021_acsanm_2c02836
crossref_primary_10_1021_jp507087k
crossref_primary_10_1088_2053_1583_ab1c20
crossref_primary_10_7498_aps_72_20222303
crossref_primary_10_1016_j_synthmet_2020_116326
crossref_primary_10_1063_5_0156924
crossref_primary_10_1002_smll_202304497
crossref_primary_10_1186_s11671_017_2156_z
crossref_primary_10_1007_s00339_023_06483_7
crossref_primary_10_1021_acsami_0c14996
crossref_primary_10_1016_j_optmat_2020_110241
crossref_primary_10_1021_acsami_0c10279
crossref_primary_10_1088_1361_6528_ab884c
crossref_primary_10_1002_adfm_201500216
crossref_primary_10_1039_C8TB02064G
crossref_primary_10_1016_j_jiec_2021_04_051
crossref_primary_10_1021_acsami_9b10365
crossref_primary_10_1002_adom_201600468
crossref_primary_10_1016_j_rinp_2023_106935
crossref_primary_10_1039_C5CP00679A
crossref_primary_10_1021_acsami_7b07667
crossref_primary_10_1088_1361_6463_ac8b1b
crossref_primary_10_1021_acs_jpcc_0c03193
crossref_primary_10_1088_1361_6528_aa565c
crossref_primary_10_1039_C5TC01016K
crossref_primary_10_1088_0957_4484_26_30_305201
crossref_primary_10_1039_C9TC04519H
crossref_primary_10_1021_acsami_5b08677
crossref_primary_10_1021_acsami_6b09752
crossref_primary_10_3390_catal10010142
crossref_primary_10_1016_j_electacta_2018_06_060
crossref_primary_10_3390_nano6090157
crossref_primary_10_3390_cryst11060717
crossref_primary_10_1002_adma_201602867
crossref_primary_10_1016_j_mee_2018_04_009
crossref_primary_10_1016_j_snb_2018_12_062
crossref_primary_10_1063_5_0122943
crossref_primary_10_1021_acsanm_1c00517
crossref_primary_10_1002_smll_201701848
crossref_primary_10_1002_smll_201701726
crossref_primary_10_1088_1361_6528_ace192
crossref_primary_10_1002_adfm_201501250
crossref_primary_10_1002_anie_201411956
crossref_primary_10_1039_C4NR06329E
crossref_primary_10_1088_1361_6439_ab3749
crossref_primary_10_1016_j_jece_2023_109487
crossref_primary_10_1016_j_mtchem_2021_100763
crossref_primary_10_1016_j_rser_2020_110391
crossref_primary_10_1039_C8TC05765F
crossref_primary_10_1021_acsami_5b10336
crossref_primary_10_3390_app11041453
crossref_primary_10_1016_j_nanoen_2024_109277
crossref_primary_10_1039_C7TC00696A
crossref_primary_10_1038_srep24847
crossref_primary_10_1016_j_electacta_2018_05_057
crossref_primary_10_1016_j_nantod_2016_08_006
crossref_primary_10_1109_LED_2018_2872107
crossref_primary_10_1016_j_apsusc_2017_10_054
crossref_primary_10_1021_acsami_0c10323
crossref_primary_10_1088_1361_6528_ac0d7c
crossref_primary_10_1039_C7TC04565D
crossref_primary_10_1039_C7TC04184E
crossref_primary_10_1007_s13391_016_6091_4
crossref_primary_10_1039_C9TC00134D
crossref_primary_10_1021_acsaem_1c00448
crossref_primary_10_1016_j_electacta_2014_11_200
crossref_primary_10_1016_j_electacta_2015_08_015
crossref_primary_10_1002_smll_201701822
crossref_primary_10_1016_j_apcatb_2018_10_045
crossref_primary_10_1088_1361_6528_aa74a3
crossref_primary_10_1002_adfm_202423102
crossref_primary_10_1002_adma_201503534
crossref_primary_10_1039_D0NR07251F
crossref_primary_10_1039_C8TC02139B
crossref_primary_10_1039_C4RA16781C
crossref_primary_10_1002_adfm_202107040
crossref_primary_10_1007_s40089_021_00359_5
crossref_primary_10_1016_j_jallcom_2015_11_164
crossref_primary_10_1016_j_jiec_2022_12_016
crossref_primary_10_1016_j_bios_2019_111640
crossref_primary_10_1016_j_solmat_2018_03_017
crossref_primary_10_1088_1361_6528_aad0ba
crossref_primary_10_1016_j_jcis_2018_09_050
crossref_primary_10_1364_OE_23_004839
crossref_primary_10_3390_nano11041038
crossref_primary_10_1039_C6RA18150C
crossref_primary_10_20517_energymater_2024_54
crossref_primary_10_1021_acsami_5b00868
crossref_primary_10_1016_j_dyepig_2021_109549
crossref_primary_10_1021_acs_jpcc_9b06774
crossref_primary_10_1002_ange_201411956
crossref_primary_10_1039_C5NR06908D
crossref_primary_10_1016_j_matlet_2015_08_056
Cites_doi 10.1039/c1dt11147g
10.1039/c2jm30703k
10.1039/c1nr10629e
10.1063/1.3455339
10.1039/c2ce25791b
10.1039/c3nr34142a
10.1021/ja205703c
10.1021/jp210455w
10.1039/c3ta10203c
10.1039/c2nr11634k
10.1016/j.solmat.2012.12.046
10.1021/ja960348n
10.1002/adma.201102712
10.1021/nl104364c
10.1002/adma.201003991
10.1039/c3ta11384a
10.1109/T-ED.1980.19946
10.1002/anie.200906154
10.1021/nl802700u
10.1021/ja0777741
10.1088/0957-4484/23/19/194006
10.1063/1.3120281
10.1021/nl025875l
10.1063/1.4711205
10.1038/nature06181
10.1021/ja056785w
10.1126/science.1066192
10.1002/smll.201203188
10.1126/science.1062711
10.1002/chem.200600032
10.1002/anie.201104102
10.1039/c2jm15674a
10.1002/anie.201201656
10.1021/nl303682j
10.1002/adfm.200800940
10.1016/0167-5729(82)90001-2
10.1063/1.2885724
10.1088/0957-4484/21/9/095502
10.1039/c3nr33985h
ContentType Journal Article
Copyright Copyright © 2014 American Chemical Society
Copyright_xml – notice: Copyright © 2014 American Chemical Society
DBID AAYXX
CITATION
NPM
7X8
7SP
7SR
7TB
7U5
8BQ
8FD
FR3
JG9
L7M
DOI 10.1021/nn501001j
DatabaseName CrossRef
PubMed
MEDLINE - Academic
Electronics & Communications Abstracts
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList PubMed

MEDLINE - Academic
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1936-086X
EndPage 4022
ExternalDocumentID 24665986
10_1021_nn501001j
h89092234
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
23M
4.4
53G
55A
5GY
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
LG6
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
YZZ
---
.K2
5VS
6J9
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHGD
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
NPM
7X8
7SP
7SR
7TB
7U5
8BQ
8FD
FR3
JG9
L7M
ID FETCH-LOGICAL-a414t-74d9d99b2dfd5956890d9ff49f5711280c376bdf547572e90aa2f7b5dcae31543
IEDL.DBID ACS
ISSN 1936-0851
1936-086X
IngestDate Fri Jul 11 03:42:48 EDT 2025
Fri Jul 11 09:29:01 EDT 2025
Thu Apr 03 07:09:18 EDT 2025
Tue Jul 01 01:33:39 EDT 2025
Thu Apr 24 23:03:41 EDT 2025
Thu Aug 27 13:43:00 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords relative balance
surface passivation
barrier height
silicon nanowire array
carbon quantum dots
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a414t-74d9d99b2dfd5956890d9ff49f5711280c376bdf547572e90aa2f7b5dcae31543
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 24665986
PQID 1518619964
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_1762051084
proquest_miscellaneous_1518619964
pubmed_primary_24665986
crossref_primary_10_1021_nn501001j
crossref_citationtrail_10_1021_nn501001j
acs_journals_10_1021_nn501001j
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-04-22
PublicationDateYYYYMMDD 2014-04-22
PublicationDate_xml – month: 04
  year: 2014
  text: 2014-04-22
  day: 22
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS nano
PublicationTitleAlternate ACS Nano
PublicationYear 2014
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Peng K. Q. (ref37/cit37) 2006; 12
Xie C. (ref35/cit35) 2012; 14
Yang H. T. (ref27/cit27) 1980; 27
Zhang X. Z. (ref21/cit21) 2013; 1
Manna S. (ref34/cit34) 2012; 116
Zhang F. T. (ref19/cit19) 2012; 22
Li H. T. (ref12/cit12) 2010; 49
Wang Z. L. (ref31/cit31) 2012; 51
Huang Y. (ref4/cit4) 2001; 294
Tian B. Z. (ref7/cit7) 2007; 449
Luo L. B. (ref3/cit3) 2009; 94
Chen C. C. (ref22/cit22) 2011; 11
Lee Y. L. (ref16/cit16) 2009; 19
Jung J. Y. (ref28/cit28) 2013; 112
Zhang H. C. (ref13/cit13) 2011; 40
Cui Y. (ref1/cit1) 2003; 3
An X. H. (ref32/cit32) 2013; 13
Zhang F. T. (ref20/cit20) 2012; 23
Czaban J. A. (ref8/cit8) 2009; 9
Bae J. (ref36/cit36) 2010; 21
Haick H. (ref39/cit39) 2006; 128
Nie B. (ref18/cit18) 2013; 9
Wang F. (ref11/cit11) 2013; 5
Shen X. J. (ref24/cit24) 2011; 133
Wang X. (ref10/cit10) 2011; 50
Bansal A. (ref38/cit38) 1996; 118
Steim R. (ref29/cit29) 2008; 92
Brillson L. J. (ref26/cit26) 1982; 2
Song T. (ref25/cit25) 2012; 4
Zhang X. (ref15/cit15) 2013; 5
Lu W. H. (ref9/cit9) 2011; 3
Xie C. (ref30/cit30) 2013; 1
Zhang H. C. (ref14/cit14) 2012; 22
Xie C. (ref5/cit5) 2012; 100
Avasthi S. (ref23/cit23) 2011; 23
Cui Y. (ref2/cit2) 2001; 293
Weickert J. (ref6/cit6) 2011; 23
Sun W. T. (ref17/cit17) 2008; 130
Casalino M. (ref33/cit33) 2010; 96
References_xml – volume: 40
  start-page: 10822
  year: 2011
  ident: ref13/cit13
  publication-title: Dalton Trans.
  doi: 10.1039/c1dt11147g
– volume: 22
  start-page: 10501
  year: 2012
  ident: ref14/cit14
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm30703k
– volume: 3
  start-page: 3631
  year: 2011
  ident: ref9/cit9
  publication-title: Nanoscale
  doi: 10.1039/c1nr10629e
– volume: 96
  start-page: 241112
  year: 2010
  ident: ref33/cit33
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3455339
– volume: 14
  start-page: 7222
  year: 2012
  ident: ref35/cit35
  publication-title: CrystEngComm
  doi: 10.1039/c2ce25791b
– volume: 5
  start-page: 2274
  year: 2013
  ident: ref15/cit15
  publication-title: Nanoscale
  doi: 10.1039/c3nr34142a
– volume: 133
  start-page: 19408
  year: 2011
  ident: ref24/cit24
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja205703c
– volume: 116
  start-page: 7126
  year: 2012
  ident: ref34/cit34
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp210455w
– volume: 1
  start-page: 6593
  year: 2013
  ident: ref21/cit21
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c3ta10203c
– volume: 4
  start-page: 1336
  year: 2012
  ident: ref25/cit25
  publication-title: Nanoscale
  doi: 10.1039/c2nr11634k
– volume: 112
  start-page: 84
  year: 2013
  ident: ref28/cit28
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2012.12.046
– volume: 118
  start-page: 7225
  year: 1996
  ident: ref38/cit38
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja960348n
– volume: 23
  start-page: 5762
  year: 2011
  ident: ref23/cit23
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201102712
– volume: 11
  start-page: 1863
  year: 2011
  ident: ref22/cit22
  publication-title: Nano Lett.
  doi: 10.1021/nl104364c
– volume: 23
  start-page: 1810
  year: 2011
  ident: ref6/cit6
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201003991
– volume: 1
  start-page: 8567
  year: 2013
  ident: ref30/cit30
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c3ta11384a
– volume: 27
  start-page: 851
  year: 1980
  ident: ref27/cit27
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/T-ED.1980.19946
– volume: 49
  start-page: 4430
  year: 2010
  ident: ref12/cit12
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200906154
– volume: 9
  start-page: 148
  year: 2009
  ident: ref8/cit8
  publication-title: Nano Lett.
  doi: 10.1021/nl802700u
– volume: 130
  start-page: 1124
  year: 2008
  ident: ref17/cit17
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0777741
– volume: 23
  start-page: 194006
  year: 2012
  ident: ref20/cit20
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/23/19/194006
– volume: 94
  start-page: 193101
  year: 2009
  ident: ref3/cit3
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3120281
– volume: 3
  start-page: 149
  year: 2003
  ident: ref1/cit1
  publication-title: Nano Lett.
  doi: 10.1021/nl025875l
– volume: 100
  start-page: 193103
  year: 2012
  ident: ref5/cit5
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4711205
– volume: 449
  start-page: 885
  year: 2007
  ident: ref7/cit7
  publication-title: Nature
  doi: 10.1038/nature06181
– volume: 128
  start-page: 8990
  year: 2006
  ident: ref39/cit39
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja056785w
– volume: 294
  start-page: 1313
  year: 2001
  ident: ref4/cit4
  publication-title: Science
  doi: 10.1126/science.1066192
– volume: 9
  start-page: 2872
  year: 2013
  ident: ref18/cit18
  publication-title: Small
  doi: 10.1002/smll.201203188
– volume: 293
  start-page: 1289
  year: 2001
  ident: ref2/cit2
  publication-title: Science
  doi: 10.1126/science.1062711
– volume: 12
  start-page: 7942
  year: 2006
  ident: ref37/cit37
  publication-title: Chem.—Eur. J.
  doi: 10.1002/chem.200600032
– volume: 50
  start-page: 9861
  year: 2011
  ident: ref10/cit10
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201104102
– volume: 22
  start-page: 5362
  year: 2012
  ident: ref19/cit19
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm15674a
– volume: 51
  start-page: 11700
  year: 2012
  ident: ref31/cit31
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201201656
– volume: 13
  start-page: 909
  year: 2013
  ident: ref32/cit32
  publication-title: Nano Lett.
  doi: 10.1021/nl303682j
– volume: 19
  start-page: 604
  year: 2009
  ident: ref16/cit16
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.200800940
– volume: 2
  start-page: 123
  year: 1982
  ident: ref26/cit26
  publication-title: Surf. Sci. Rep.
  doi: 10.1016/0167-5729(82)90001-2
– volume: 92
  start-page: 093303
  year: 2008
  ident: ref29/cit29
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2885724
– volume: 21
  start-page: 095502
  year: 2010
  ident: ref36/cit36
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/21/9/095502
– volume: 5
  start-page: 1831
  year: 2013
  ident: ref11/cit11
  publication-title: Nanoscale
  doi: 10.1039/c3nr33985h
SSID ssj0057876
Score 2.5574603
Snippet Silicon nanostructure-based solar cells have lately intrigued intensive interest because of their promising potential in next-generation solar energy...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4015
SubjectTerms Arrays
Carbon
Heterojunctions
Nanostructure
Nanowires
Photodetectors
Photovoltaic cells
Qunatum dots
Silicon
Solar cells
Title Core–Shell Heterojunction of Silicon Nanowire Arrays and Carbon Quantum Dots for Photovoltaic Devices and Self-Driven Photodetectors
URI http://dx.doi.org/10.1021/nn501001j
https://www.ncbi.nlm.nih.gov/pubmed/24665986
https://www.proquest.com/docview/1518619964
https://www.proquest.com/docview/1762051084
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1JT9wwFLZgeoFDF7ZSWmQoBy6hicdOxkc0Axr1gEBTJG6R40UMHeIqy6E99dQ_0H_YX9L3ksloKpae8xwnfttnvefPhBwlAEEiY2RgIHcFXEc8UEKGgQldH9m-uXMN2-dFPL7mn2_EzQr5-EQFn0Wf8lyESBR0t0pesBicF_HPcNKFW7S4uC0dw9YY8ENHH7Q8FFOPLv9NPU_gySavnL8io-50TttO8vWkrrIT_eMhWeNzn_yavJzjSnraGsIbsmLzDbK-xDa4SX4NfWH__Pw9wd5POsY-GH8HaQ1VQ72jk-kMzCKnEHA9MhjDywr1vaQqN3SoigweXdWgiPqejnxVUoC79PLWVx4iXKWmmo5sE3aaARM7c8GowFjaChlbNQWCcotcn599GY6D-TUMgeIRr4KEG2mkzJhxRuDpQhka6RyXTiSA1gahhiCVGSd4IhJmZagUc0kmjFa2Dwitv016uc_tW0Kt0AaMQguLNWXLZWZsEhkL2xTbF6HaJfugp3TuRmXaVMhZlC4WdJccdypM9ZzEHO_SmD0mergQ_dYydzwmdNDZQQp-hcUSlVtfw9QiGsTYos2fkYFMgkFtADI7rREtpmI8jpH7_t3_fmmPrIG7NN1AjL0nvaqo7QcAOlW23xj6X6Gp-Ko
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LU9RAEJ4SPAgHFVHAB4wUBy-BJDuT7BypXalVkNJaqOKWmsyjBJYMlcdBT578A_5Df4ndk-wKFCjn9DyS-ab7m-rON4RspUBBIq1FoCF2BUxFLJBchIEObQ_Vvpm1Xu3zMBkds48n_KSTycF_YWASFfRU-ST-X3WBaKcoeIh6QWdz5CGQkBjRvDsYT70uAi9pM8hwQgYaMVURutoUI5CqrkegO2ilDy97T9p7ivzEfFXJ-XZT59vq-w3NxvvN_Cl53LFMutvCYok8MMUzsnhFe3CZ_By40vz-8WuMlaB0hFUx7gyCHC4UdZaOTycAkoKC-3WoZwydlfJbRWWh6UCWOTz60sCyNBd06OqKAvmln7-62oG_q-WpokPjnZBvMDYTGwxL9KytkTa1TxdUz8nx3vujwSjoLmUIJItYHaRMCy1EHmurOf5rKEItrGXC8hS4Wz9U4LJybTlLeRobEUoZ2zTnWknTA77We0HmC1eYVUINVxogorjBDLNhItcmjbSBQ4vp8VCukXX4nlm3qarM58vjKJt90DXybrqSmeokzfFmjcltppsz08tWx-M2o7dTOGSwyzB1IgvjGhiaR_0EC7bZP2wgrqCL64PNSoul2VAxSxJUwn_5v1faII9GR58OsoMPh_uvyAJsJF8nFMevyXxdNuYNUKA6X_fY_wPDuAEa
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Jb9QwFLagSIge2JeyFIM4cElJMnYyPlYzjIZFpWio1Fvk-Nmi7RBXWQ5w4sQf4B_yS3jPyYwKKss5z0vs7y3We_7M2LMcQ5AEQEWAvisSJhGRliqOIHYjYvsWzgW2z71sfiBeH8rD4aBId2FwEg321IQkPmn1KbiBYSB5UVUyJs6g44vsEqXrCNG7k8XK8hL4sj6LjKdkDCVWTEJnm5IXMs2vXugPoWVwMbNr7N16cqGy5GSna8sd8-U33sb_n_11dnWINvluD48b7IKtbrLNMxyEt9i3ia_tj6_fF1QRyudUHeOP0dnRhnHv-OJoiWCpOJphT7zG2FmtPzdcV8Anui7x0_sOt6f7xKe-bTgGwXz_o2892r1WHxk-tcEYhQYLu3TRtCYL2wuBbUPaoLnNDmYvP0zm0fA4Q6RFItooF6BAqTIFB5LuHKoYlHNCOZljDDeODZquEpwUucxTq2KtU5eXEoy2I4zbRnfYRuUre49xKw0gVIy0lGm2QpVg8wQsHl7sSMZ6i23jmhaDcjVFyJunSbFe0C32fLWbhRmozemFjeV5ok_Xoqc9n8d5Qk9WkChQ2yiFoivrOxxaJuOMCrfFX2TQv5CpG6PM3R5P66FSkWXEiH__X7_0mF3en86Kt6_23jxgV1CfQrlQmj5kG23d2UcYCbXldoD_TxJeA50
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Core-shell+heterojunction+of+silicon+nanowire+arrays+and+carbon+quantum+dots+for+photovoltaic+devices+and+self-driven+photodetectors&rft.jtitle=ACS+nano&rft.au=Xie%2C+Chao&rft.au=Nie%2C+Biao&rft.au=Zeng%2C+Longhui&rft.au=Liang%2C+Feng-Xia&rft.date=2014-04-22&rft.issn=1936-086X&rft.eissn=1936-086X&rft.volume=8&rft.issue=4&rft.spage=4015&rft_id=info:doi/10.1021%2Fnn501001j&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon