Core–Shell Heterojunction of Silicon Nanowire Arrays and Carbon Quantum Dots for Photovoltaic Devices and Self-Driven Photodetectors
Silicon nanostructure-based solar cells have lately intrigued intensive interest because of their promising potential in next-generation solar energy conversion devices. Herein, we report a silicon nanowire (SiNW) array/carbon quantum dot (CQD) core–shell heterojunction photovoltaic device by direct...
Saved in:
Published in | ACS nano Vol. 8; no. 4; pp. 4015 - 4022 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
22.04.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Silicon nanostructure-based solar cells have lately intrigued intensive interest because of their promising potential in next-generation solar energy conversion devices. Herein, we report a silicon nanowire (SiNW) array/carbon quantum dot (CQD) core–shell heterojunction photovoltaic device by directly coating Ag-assisted chemical-etched SiNW arrays with CQDs. The heterojunction with a barrier height of 0.75 eV exhibited excellent rectifying behavior with a rectification ratio of 103 at ±0.8 V in the dark and power conversion efficiency (PCE) as high as 9.10% under AM 1.5G irradiation. It is believed that such a high PCE comes from the improved optical absorption as well as the optimized carrier transfer and collection capability. Furthermore, the heterojunction could function as a high-performance self-driven visible light photodetector operating in a wide switching wavelength with good stability, high sensitivity, and fast response speed. It is expected that the present SiNW array/CQD core–shell heterojunction device could find potential applications in future high-performance optoelectronic devices. |
---|---|
AbstractList | Silicon nanostructure-based solar cells have lately intrigued intensive interest because of their promising potential in next-generation solar energy conversion devices. Herein, we report a silicon nanowire (SiNW) array/carbon quantum dot (CQD) core-shell heterojunction photovoltaic device by directly coating Ag-assisted chemical-etched SiNW arrays with CQDs. The heterojunction with a barrier height of 0.75 eV exhibited excellent rectifying behavior with a rectification ratio of 10(3) at ±0.8 V in the dark and power conversion efficiency (PCE) as high as 9.10% under AM 1.5G irradiation. It is believed that such a high PCE comes from the improved optical absorption as well as the optimized carrier transfer and collection capability. Furthermore, the heterojunction could function as a high-performance self-driven visible light photodetector operating in a wide switching wavelength with good stability, high sensitivity, and fast response speed. It is expected that the present SiNW array/CQD core-shell heterojunction device could find potential applications in future high-performance optoelectronic devices. Silicon nanostructure-based solar cells have lately intrigued intensive interest because of their promising potential in next-generation solar energy conversion devices. Herein, we report a silicon nanowire (SiNW) array/carbon quantum dot (CQD) core–shell heterojunction photovoltaic device by directly coating Ag-assisted chemical-etched SiNW arrays with CQDs. The heterojunction with a barrier height of 0.75 eV exhibited excellent rectifying behavior with a rectification ratio of 103 at ±0.8 V in the dark and power conversion efficiency (PCE) as high as 9.10% under AM 1.5G irradiation. It is believed that such a high PCE comes from the improved optical absorption as well as the optimized carrier transfer and collection capability. Furthermore, the heterojunction could function as a high-performance self-driven visible light photodetector operating in a wide switching wavelength with good stability, high sensitivity, and fast response speed. It is expected that the present SiNW array/CQD core–shell heterojunction device could find potential applications in future high-performance optoelectronic devices. Silicon nanostructure-based solar cells have lately intrigued intensive interest because of their promising potential in next-generation solar energy conversion devices. Herein, we report a silicon nanowire (SiNW) array/carbon quantum dot (CQD) core-shell heterojunction photovoltaic device by directly coating Ag-assisted chemical-etched SiNW arrays with CQDs. The heterojunction with a barrier height of 0.75 eV exhibited excellent rectifying behavior with a rectification ratio of 10(3) at ±0.8 V in the dark and power conversion efficiency (PCE) as high as 9.10% under AM 1.5G irradiation. It is believed that such a high PCE comes from the improved optical absorption as well as the optimized carrier transfer and collection capability. Furthermore, the heterojunction could function as a high-performance self-driven visible light photodetector operating in a wide switching wavelength with good stability, high sensitivity, and fast response speed. It is expected that the present SiNW array/CQD core-shell heterojunction device could find potential applications in future high-performance optoelectronic devices.Silicon nanostructure-based solar cells have lately intrigued intensive interest because of their promising potential in next-generation solar energy conversion devices. Herein, we report a silicon nanowire (SiNW) array/carbon quantum dot (CQD) core-shell heterojunction photovoltaic device by directly coating Ag-assisted chemical-etched SiNW arrays with CQDs. The heterojunction with a barrier height of 0.75 eV exhibited excellent rectifying behavior with a rectification ratio of 10(3) at ±0.8 V in the dark and power conversion efficiency (PCE) as high as 9.10% under AM 1.5G irradiation. It is believed that such a high PCE comes from the improved optical absorption as well as the optimized carrier transfer and collection capability. Furthermore, the heterojunction could function as a high-performance self-driven visible light photodetector operating in a wide switching wavelength with good stability, high sensitivity, and fast response speed. It is expected that the present SiNW array/CQD core-shell heterojunction device could find potential applications in future high-performance optoelectronic devices. Silicon nanostructure-based solar cells have lately intrigued intensive interest because of their promising potential in next-generation solar energy conversion devices. Herein, we report a silicon nanowire (SiNW) array/carbon quantum dot (CQD) core-shell heterojunction photovoltaic device by directly coating Ag-assisted chemical-etched SiNW arrays with CQDs. The heterojunction with a barrier height of 0.75 eV exhibited excellent rectifying behavior with a rectification ratio of 10 super(3) at plus or minus 0.8 V in the dark and power conversion efficiency (PCE) as high as 9.10% under AM 1.5G irradiation. It is believed that such a high PCE comes from the improved optical absorption as well as the optimized carrier transfer and collection capability. Furthermore, the heterojunction could function as a high-performance self-driven visible light photodetector operating in a wide switching wavelength with good stability, high sensitivity, and fast response speed. It is expected that the present SiNW array/CQD core-shell heterojunction device could find potential applications in future high-performance optoelectronic devices. Keywords: silicon nanowire array; carbon quantum dots; surface passivation; relative balance; barrier height |
Author | Nie, Biao Luo, Linbao Yu, Yongqiang Xie, Chao Liang, Feng-Xia Zeng, Longhui Wu, Chun-Yan Wang, Ming-Zheng Feng, Mei Wu, Yucheng Yu, Shu-Hong |
AuthorAffiliation | Department of Chemistry University of Science and Technology of China School of Electronic Science and Applied Physics School of Materials Science and Engineering Hefei University of Technology |
AuthorAffiliation_xml | – name: University of Science and Technology of China – name: Hefei University of Technology – name: Department of Chemistry – name: School of Materials Science and Engineering – name: School of Electronic Science and Applied Physics |
Author_xml | – sequence: 1 givenname: Chao surname: Xie fullname: Xie, Chao – sequence: 2 givenname: Biao surname: Nie fullname: Nie, Biao – sequence: 3 givenname: Longhui surname: Zeng fullname: Zeng, Longhui – sequence: 4 givenname: Feng-Xia surname: Liang fullname: Liang, Feng-Xia – sequence: 5 givenname: Ming-Zheng surname: Wang fullname: Wang, Ming-Zheng – sequence: 6 givenname: Linbao surname: Luo fullname: Luo, Linbao email: luolb@hfut.edu.cn, ycwu@hfut.edu.cn, shyu@ustc.edu.cn – sequence: 7 givenname: Mei surname: Feng fullname: Feng, Mei – sequence: 8 givenname: Yongqiang surname: Yu fullname: Yu, Yongqiang – sequence: 9 givenname: Chun-Yan surname: Wu fullname: Wu, Chun-Yan – sequence: 10 givenname: Yucheng surname: Wu fullname: Wu, Yucheng email: luolb@hfut.edu.cn, ycwu@hfut.edu.cn, shyu@ustc.edu.cn – sequence: 11 givenname: Shu-Hong surname: Yu fullname: Yu, Shu-Hong email: luolb@hfut.edu.cn, ycwu@hfut.edu.cn, shyu@ustc.edu.cn |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24665986$$D View this record in MEDLINE/PubMed |
BookMark | eNqN0b1OHDEQB3ALgfgueIHIDVJSLNh7a3tdorskREIBdCDRrbz2WPi0ZxPbexFdqrxA3jBPkj0tXBFRUHkk__62ZuYAbfvgAaETSs4oKem594xQQuhiC-1TOeEFqfnD9qZmdA8dpLQghIla8F20V1acM1nzffR7GiL8_fVn_ghdhy8hQwyL3uvsgsfB4rnrnB7K78qHny4CvohRPSesvMFTFdvh6rZXPvdLPAs5YRsivnkMOaxCl5XTeAYrp2EMzKGzxSy6FfgRmeE_nUNMR2jHqi7B8ct5iO6_fL6bXhZX11-_TS-uClXRKheiMtJI2ZbGGiYZryUx0tpKWiYoLWuiJ4K3xrJKMFGCJEqVVrTMaAUTyqrJIfo4vvsUw48eUm6WLumhdeUh9KmhgpeEUVK_gzJacyolX9MPL7Rvl2Cap-iWKj43r2MewKcR6BhSimA3hJJmvcJms8LBnv9ntctqvY8cleveTJyOCaVTswh99MMI33D_ACCqq4U |
CitedBy_id | crossref_primary_10_1021_acsami_6b06531 crossref_primary_10_1002_smll_202400107 crossref_primary_10_1039_C6NR07681E crossref_primary_10_1039_C4RA16529B crossref_primary_10_3390_s21186146 crossref_primary_10_1007_s11664_021_09182_2 crossref_primary_10_3390_coatings11020232 crossref_primary_10_1088_0957_4484_27_8_085605 crossref_primary_10_1021_acsomega_9b00621 crossref_primary_10_1002_adom_201900023 crossref_primary_10_3390_mi11090842 crossref_primary_10_1021_acsbiomaterials_0c00982 crossref_primary_10_1016_j_physe_2020_114147 crossref_primary_10_1038_s41377_022_00777_w crossref_primary_10_1016_j_jcat_2016_11_028 crossref_primary_10_1016_j_optmat_2021_111118 crossref_primary_10_1021_acsami_7b14250 crossref_primary_10_1016_j_carbon_2016_08_058 crossref_primary_10_1063_1_5083902 crossref_primary_10_1063_5_0032036 crossref_primary_10_1002_advs_201600018 crossref_primary_10_1016_j_nantod_2018_02_009 crossref_primary_10_1002_agt2_108 crossref_primary_10_1021_acsomega_8b00303 crossref_primary_10_1021_acsaelm_9b00705 crossref_primary_10_1021_acs_jpclett_8b00266 crossref_primary_10_1016_j_solmat_2024_112812 crossref_primary_10_1039_C4CS00136B crossref_primary_10_1016_j_apsusc_2023_157094 crossref_primary_10_1016_j_mtener_2023_101375 crossref_primary_10_1038_srep38252 crossref_primary_10_1016_j_electacta_2018_04_052 crossref_primary_10_1039_C8TC06383D crossref_primary_10_3866_PKU_WHXB202310004 crossref_primary_10_1016_j_jphotochemrev_2020_100354 crossref_primary_10_1016_j_mtchem_2022_101125 crossref_primary_10_1002_er_6654 crossref_primary_10_1039_C8TB03233E crossref_primary_10_1039_D0MA00108B crossref_primary_10_1016_j_jallcom_2017_07_338 crossref_primary_10_1021_acsomega_7b02082 crossref_primary_10_1016_j_jallcom_2014_07_171 crossref_primary_10_1016_j_saa_2018_12_024 crossref_primary_10_1039_C5CP03498A crossref_primary_10_1088_2053_1591_aa8a37 crossref_primary_10_1016_j_mssp_2023_107560 crossref_primary_10_1002_adom_202403097 crossref_primary_10_1021_acsami_9b12827 crossref_primary_10_1021_acs_nanolett_1c01244 crossref_primary_10_1021_acsami_5b09492 crossref_primary_10_1155_2017_7029731 crossref_primary_10_1063_1_4968794 crossref_primary_10_1364_OE_24_0A1075 crossref_primary_10_3390_en16186456 crossref_primary_10_1016_j_apmt_2017_12_013 crossref_primary_10_1039_C6RA20467H crossref_primary_10_1021_acs_jpclett_8b01255 crossref_primary_10_1016_j_apsusc_2016_01_278 crossref_primary_10_1039_C7RA01430A crossref_primary_10_1016_j_mtphys_2021_100398 crossref_primary_10_1039_C8CS00750K crossref_primary_10_1016_j_apsusc_2021_149256 crossref_primary_10_1088_0957_4484_28_1_012001 crossref_primary_10_3390_cryst11121479 crossref_primary_10_1021_acsami_7b06620 crossref_primary_10_1016_j_jenvman_2019_109486 crossref_primary_10_1088_1361_6528_ab5889 crossref_primary_10_1021_acs_chemrev_8b00599 crossref_primary_10_1063_1_4936174 crossref_primary_10_1002_adfm_202214996 crossref_primary_10_1021_acsami_8b08387 crossref_primary_10_1039_C8EE02744G crossref_primary_10_1021_acsnano_3c05178 crossref_primary_10_1002_inf2_12014 crossref_primary_10_1021_acsnano_2c10705 crossref_primary_10_1039_C5CP04942C crossref_primary_10_1039_C8CC05860A crossref_primary_10_1515_ntrev_2024_0038 crossref_primary_10_1039_C6TC04029B crossref_primary_10_1016_j_nanoen_2014_07_003 crossref_primary_10_1038_srep12604 crossref_primary_10_1039_C9TC00797K crossref_primary_10_1002_adfm_202316430 crossref_primary_10_1016_j_optmat_2020_109760 crossref_primary_10_1515_nanoph_2016_0024 crossref_primary_10_1109_JSEN_2022_3211846 crossref_primary_10_1039_C5NR07901B crossref_primary_10_1016_j_mssp_2024_109212 crossref_primary_10_1021_acsphotonics_1c00015 crossref_primary_10_1016_j_nanoen_2015_09_005 crossref_primary_10_1007_s11468_015_0091_3 crossref_primary_10_1039_C8NR01553H crossref_primary_10_1007_s10854_024_14094_y crossref_primary_10_1039_C7EN00179G crossref_primary_10_1002_adom_202001708 crossref_primary_10_1039_C7SE00158D crossref_primary_10_1109_LSENS_2019_2926744 crossref_primary_10_1002_pssr_202000537 crossref_primary_10_3389_fenrg_2021_666534 crossref_primary_10_1021_acsanm_9b00860 crossref_primary_10_1016_j_electacta_2015_03_095 crossref_primary_10_1002_smll_202102884 crossref_primary_10_1002_advs_201900522 crossref_primary_10_1038_s41378_022_00410_1 crossref_primary_10_1016_j_jallcom_2023_169276 crossref_primary_10_1021_acs_jpcc_8b09308 crossref_primary_10_1002_smll_202207181 crossref_primary_10_1007_s00339_023_06649_3 crossref_primary_10_1016_j_apcatb_2015_06_056 crossref_primary_10_1021_acsnano_7b05472 crossref_primary_10_1016_j_sna_2021_112625 crossref_primary_10_1039_C8NR04004D crossref_primary_10_1002_admt_202200863 crossref_primary_10_1002_adfm_201705970 crossref_primary_10_1016_j_jpowsour_2017_09_055 crossref_primary_10_1016_j_matchemphys_2019_122158 crossref_primary_10_1021_acsanm_1c02505 crossref_primary_10_1039_C9TC01730E crossref_primary_10_1021_acsnano_9b00688 crossref_primary_10_3390_electronics8060678 crossref_primary_10_1039_C5NR07494K crossref_primary_10_1039_C6TC03856E crossref_primary_10_1016_j_nanoen_2015_05_008 crossref_primary_10_1039_C5TC00449G crossref_primary_10_1038_s41427_018_0035_4 crossref_primary_10_1016_j_solener_2020_12_022 crossref_primary_10_1021_acsami_8b20182 crossref_primary_10_1021_am505640t crossref_primary_10_1016_j_rechem_2024_101322 crossref_primary_10_1016_j_solmat_2017_07_042 crossref_primary_10_1039_C4RA11931B crossref_primary_10_1016_j_optmat_2020_109837 crossref_primary_10_1002_advs_201500002 crossref_primary_10_1002_admi_201900923 crossref_primary_10_1016_j_jallcom_2018_05_190 crossref_primary_10_1016_j_materresbull_2023_112262 crossref_primary_10_1002_adom_201700081 crossref_primary_10_1007_s00604_019_3303_2 crossref_primary_10_1021_acsaelm_3c00156 crossref_primary_10_1088_1361_6528_acb320 crossref_primary_10_1002_smtd_202401240 crossref_primary_10_1016_j_mseb_2023_116808 crossref_primary_10_1021_acssuschemeng_9b04817 crossref_primary_10_1016_j_solener_2022_01_063 crossref_primary_10_1016_j_carbon_2024_118842 crossref_primary_10_1109_JPHOT_2024_3381440 crossref_primary_10_1002_smll_201702107 crossref_primary_10_1016_j_materresbull_2017_07_038 crossref_primary_10_1088_2043_6254_ab9193 crossref_primary_10_1039_C5NR08791K crossref_primary_10_1007_s10854_023_11399_2 crossref_primary_10_1021_acsanm_2c02836 crossref_primary_10_1021_jp507087k crossref_primary_10_1088_2053_1583_ab1c20 crossref_primary_10_7498_aps_72_20222303 crossref_primary_10_1016_j_synthmet_2020_116326 crossref_primary_10_1063_5_0156924 crossref_primary_10_1002_smll_202304497 crossref_primary_10_1186_s11671_017_2156_z crossref_primary_10_1007_s00339_023_06483_7 crossref_primary_10_1021_acsami_0c14996 crossref_primary_10_1016_j_optmat_2020_110241 crossref_primary_10_1021_acsami_0c10279 crossref_primary_10_1088_1361_6528_ab884c crossref_primary_10_1002_adfm_201500216 crossref_primary_10_1039_C8TB02064G crossref_primary_10_1016_j_jiec_2021_04_051 crossref_primary_10_1021_acsami_9b10365 crossref_primary_10_1002_adom_201600468 crossref_primary_10_1016_j_rinp_2023_106935 crossref_primary_10_1039_C5CP00679A crossref_primary_10_1021_acsami_7b07667 crossref_primary_10_1088_1361_6463_ac8b1b crossref_primary_10_1021_acs_jpcc_0c03193 crossref_primary_10_1088_1361_6528_aa565c crossref_primary_10_1039_C5TC01016K crossref_primary_10_1088_0957_4484_26_30_305201 crossref_primary_10_1039_C9TC04519H crossref_primary_10_1021_acsami_5b08677 crossref_primary_10_1021_acsami_6b09752 crossref_primary_10_3390_catal10010142 crossref_primary_10_1016_j_electacta_2018_06_060 crossref_primary_10_3390_nano6090157 crossref_primary_10_3390_cryst11060717 crossref_primary_10_1002_adma_201602867 crossref_primary_10_1016_j_mee_2018_04_009 crossref_primary_10_1016_j_snb_2018_12_062 crossref_primary_10_1063_5_0122943 crossref_primary_10_1021_acsanm_1c00517 crossref_primary_10_1002_smll_201701848 crossref_primary_10_1002_smll_201701726 crossref_primary_10_1088_1361_6528_ace192 crossref_primary_10_1002_adfm_201501250 crossref_primary_10_1002_anie_201411956 crossref_primary_10_1039_C4NR06329E crossref_primary_10_1088_1361_6439_ab3749 crossref_primary_10_1016_j_jece_2023_109487 crossref_primary_10_1016_j_mtchem_2021_100763 crossref_primary_10_1016_j_rser_2020_110391 crossref_primary_10_1039_C8TC05765F crossref_primary_10_1021_acsami_5b10336 crossref_primary_10_3390_app11041453 crossref_primary_10_1016_j_nanoen_2024_109277 crossref_primary_10_1039_C7TC00696A crossref_primary_10_1038_srep24847 crossref_primary_10_1016_j_electacta_2018_05_057 crossref_primary_10_1016_j_nantod_2016_08_006 crossref_primary_10_1109_LED_2018_2872107 crossref_primary_10_1016_j_apsusc_2017_10_054 crossref_primary_10_1021_acsami_0c10323 crossref_primary_10_1088_1361_6528_ac0d7c crossref_primary_10_1039_C7TC04565D crossref_primary_10_1039_C7TC04184E crossref_primary_10_1007_s13391_016_6091_4 crossref_primary_10_1039_C9TC00134D crossref_primary_10_1021_acsaem_1c00448 crossref_primary_10_1016_j_electacta_2014_11_200 crossref_primary_10_1016_j_electacta_2015_08_015 crossref_primary_10_1002_smll_201701822 crossref_primary_10_1016_j_apcatb_2018_10_045 crossref_primary_10_1088_1361_6528_aa74a3 crossref_primary_10_1002_adfm_202423102 crossref_primary_10_1002_adma_201503534 crossref_primary_10_1039_D0NR07251F crossref_primary_10_1039_C8TC02139B crossref_primary_10_1039_C4RA16781C crossref_primary_10_1002_adfm_202107040 crossref_primary_10_1007_s40089_021_00359_5 crossref_primary_10_1016_j_jallcom_2015_11_164 crossref_primary_10_1016_j_jiec_2022_12_016 crossref_primary_10_1016_j_bios_2019_111640 crossref_primary_10_1016_j_solmat_2018_03_017 crossref_primary_10_1088_1361_6528_aad0ba crossref_primary_10_1016_j_jcis_2018_09_050 crossref_primary_10_1364_OE_23_004839 crossref_primary_10_3390_nano11041038 crossref_primary_10_1039_C6RA18150C crossref_primary_10_20517_energymater_2024_54 crossref_primary_10_1021_acsami_5b00868 crossref_primary_10_1016_j_dyepig_2021_109549 crossref_primary_10_1021_acs_jpcc_9b06774 crossref_primary_10_1002_ange_201411956 crossref_primary_10_1039_C5NR06908D crossref_primary_10_1016_j_matlet_2015_08_056 |
Cites_doi | 10.1039/c1dt11147g 10.1039/c2jm30703k 10.1039/c1nr10629e 10.1063/1.3455339 10.1039/c2ce25791b 10.1039/c3nr34142a 10.1021/ja205703c 10.1021/jp210455w 10.1039/c3ta10203c 10.1039/c2nr11634k 10.1016/j.solmat.2012.12.046 10.1021/ja960348n 10.1002/adma.201102712 10.1021/nl104364c 10.1002/adma.201003991 10.1039/c3ta11384a 10.1109/T-ED.1980.19946 10.1002/anie.200906154 10.1021/nl802700u 10.1021/ja0777741 10.1088/0957-4484/23/19/194006 10.1063/1.3120281 10.1021/nl025875l 10.1063/1.4711205 10.1038/nature06181 10.1021/ja056785w 10.1126/science.1066192 10.1002/smll.201203188 10.1126/science.1062711 10.1002/chem.200600032 10.1002/anie.201104102 10.1039/c2jm15674a 10.1002/anie.201201656 10.1021/nl303682j 10.1002/adfm.200800940 10.1016/0167-5729(82)90001-2 10.1063/1.2885724 10.1088/0957-4484/21/9/095502 10.1039/c3nr33985h |
ContentType | Journal Article |
Copyright | Copyright © 2014 American Chemical Society |
Copyright_xml | – notice: Copyright © 2014 American Chemical Society |
DBID | AAYXX CITATION NPM 7X8 7SP 7SR 7TB 7U5 8BQ 8FD FR3 JG9 L7M |
DOI | 10.1021/nn501001j |
DatabaseName | CrossRef PubMed MEDLINE - Academic Electronics & Communications Abstracts Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Engineering Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic Materials Research Database Engineered Materials Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | PubMed MEDLINE - Academic Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1936-086X |
EndPage | 4022 |
ExternalDocumentID | 24665986 10_1021_nn501001j h89092234 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - 23M 4.4 53G 55A 5GY 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ LG6 P2P RNS ROL UI2 VF5 VG9 W1F XKZ YZZ --- .K2 5VS 6J9 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHGD ADHLV AHGAQ BAANH CITATION CUPRZ GGK NPM 7X8 7SP 7SR 7TB 7U5 8BQ 8FD FR3 JG9 L7M |
ID | FETCH-LOGICAL-a414t-74d9d99b2dfd5956890d9ff49f5711280c376bdf547572e90aa2f7b5dcae31543 |
IEDL.DBID | ACS |
ISSN | 1936-0851 1936-086X |
IngestDate | Fri Jul 11 03:42:48 EDT 2025 Fri Jul 11 09:29:01 EDT 2025 Thu Apr 03 07:09:18 EDT 2025 Tue Jul 01 01:33:39 EDT 2025 Thu Apr 24 23:03:41 EDT 2025 Thu Aug 27 13:43:00 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | relative balance surface passivation barrier height silicon nanowire array carbon quantum dots |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a414t-74d9d99b2dfd5956890d9ff49f5711280c376bdf547572e90aa2f7b5dcae31543 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 24665986 |
PQID | 1518619964 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1762051084 proquest_miscellaneous_1518619964 pubmed_primary_24665986 crossref_primary_10_1021_nn501001j crossref_citationtrail_10_1021_nn501001j acs_journals_10_1021_nn501001j |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-04-22 |
PublicationDateYYYYMMDD | 2014-04-22 |
PublicationDate_xml | – month: 04 year: 2014 text: 2014-04-22 day: 22 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS nano |
PublicationTitleAlternate | ACS Nano |
PublicationYear | 2014 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Peng K. Q. (ref37/cit37) 2006; 12 Xie C. (ref35/cit35) 2012; 14 Yang H. T. (ref27/cit27) 1980; 27 Zhang X. Z. (ref21/cit21) 2013; 1 Manna S. (ref34/cit34) 2012; 116 Zhang F. T. (ref19/cit19) 2012; 22 Li H. T. (ref12/cit12) 2010; 49 Wang Z. L. (ref31/cit31) 2012; 51 Huang Y. (ref4/cit4) 2001; 294 Tian B. Z. (ref7/cit7) 2007; 449 Luo L. B. (ref3/cit3) 2009; 94 Chen C. C. (ref22/cit22) 2011; 11 Lee Y. L. (ref16/cit16) 2009; 19 Jung J. Y. (ref28/cit28) 2013; 112 Zhang H. C. (ref13/cit13) 2011; 40 Cui Y. (ref1/cit1) 2003; 3 An X. H. (ref32/cit32) 2013; 13 Zhang F. T. (ref20/cit20) 2012; 23 Czaban J. A. (ref8/cit8) 2009; 9 Bae J. (ref36/cit36) 2010; 21 Haick H. (ref39/cit39) 2006; 128 Nie B. (ref18/cit18) 2013; 9 Wang F. (ref11/cit11) 2013; 5 Shen X. J. (ref24/cit24) 2011; 133 Wang X. (ref10/cit10) 2011; 50 Bansal A. (ref38/cit38) 1996; 118 Steim R. (ref29/cit29) 2008; 92 Brillson L. J. (ref26/cit26) 1982; 2 Song T. (ref25/cit25) 2012; 4 Zhang X. (ref15/cit15) 2013; 5 Lu W. H. (ref9/cit9) 2011; 3 Xie C. (ref30/cit30) 2013; 1 Zhang H. C. (ref14/cit14) 2012; 22 Xie C. (ref5/cit5) 2012; 100 Avasthi S. (ref23/cit23) 2011; 23 Cui Y. (ref2/cit2) 2001; 293 Weickert J. (ref6/cit6) 2011; 23 Sun W. T. (ref17/cit17) 2008; 130 Casalino M. (ref33/cit33) 2010; 96 |
References_xml | – volume: 40 start-page: 10822 year: 2011 ident: ref13/cit13 publication-title: Dalton Trans. doi: 10.1039/c1dt11147g – volume: 22 start-page: 10501 year: 2012 ident: ref14/cit14 publication-title: J. Mater. Chem. doi: 10.1039/c2jm30703k – volume: 3 start-page: 3631 year: 2011 ident: ref9/cit9 publication-title: Nanoscale doi: 10.1039/c1nr10629e – volume: 96 start-page: 241112 year: 2010 ident: ref33/cit33 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3455339 – volume: 14 start-page: 7222 year: 2012 ident: ref35/cit35 publication-title: CrystEngComm doi: 10.1039/c2ce25791b – volume: 5 start-page: 2274 year: 2013 ident: ref15/cit15 publication-title: Nanoscale doi: 10.1039/c3nr34142a – volume: 133 start-page: 19408 year: 2011 ident: ref24/cit24 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja205703c – volume: 116 start-page: 7126 year: 2012 ident: ref34/cit34 publication-title: J. Phys. Chem. C doi: 10.1021/jp210455w – volume: 1 start-page: 6593 year: 2013 ident: ref21/cit21 publication-title: J. Mater. Chem. A doi: 10.1039/c3ta10203c – volume: 4 start-page: 1336 year: 2012 ident: ref25/cit25 publication-title: Nanoscale doi: 10.1039/c2nr11634k – volume: 112 start-page: 84 year: 2013 ident: ref28/cit28 publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2012.12.046 – volume: 118 start-page: 7225 year: 1996 ident: ref38/cit38 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja960348n – volume: 23 start-page: 5762 year: 2011 ident: ref23/cit23 publication-title: Adv. Mater. doi: 10.1002/adma.201102712 – volume: 11 start-page: 1863 year: 2011 ident: ref22/cit22 publication-title: Nano Lett. doi: 10.1021/nl104364c – volume: 23 start-page: 1810 year: 2011 ident: ref6/cit6 publication-title: Adv. Mater. doi: 10.1002/adma.201003991 – volume: 1 start-page: 8567 year: 2013 ident: ref30/cit30 publication-title: J. Mater. Chem. A doi: 10.1039/c3ta11384a – volume: 27 start-page: 851 year: 1980 ident: ref27/cit27 publication-title: IEEE Trans. Electron Devices doi: 10.1109/T-ED.1980.19946 – volume: 49 start-page: 4430 year: 2010 ident: ref12/cit12 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200906154 – volume: 9 start-page: 148 year: 2009 ident: ref8/cit8 publication-title: Nano Lett. doi: 10.1021/nl802700u – volume: 130 start-page: 1124 year: 2008 ident: ref17/cit17 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0777741 – volume: 23 start-page: 194006 year: 2012 ident: ref20/cit20 publication-title: Nanotechnology doi: 10.1088/0957-4484/23/19/194006 – volume: 94 start-page: 193101 year: 2009 ident: ref3/cit3 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3120281 – volume: 3 start-page: 149 year: 2003 ident: ref1/cit1 publication-title: Nano Lett. doi: 10.1021/nl025875l – volume: 100 start-page: 193103 year: 2012 ident: ref5/cit5 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4711205 – volume: 449 start-page: 885 year: 2007 ident: ref7/cit7 publication-title: Nature doi: 10.1038/nature06181 – volume: 128 start-page: 8990 year: 2006 ident: ref39/cit39 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja056785w – volume: 294 start-page: 1313 year: 2001 ident: ref4/cit4 publication-title: Science doi: 10.1126/science.1066192 – volume: 9 start-page: 2872 year: 2013 ident: ref18/cit18 publication-title: Small doi: 10.1002/smll.201203188 – volume: 293 start-page: 1289 year: 2001 ident: ref2/cit2 publication-title: Science doi: 10.1126/science.1062711 – volume: 12 start-page: 7942 year: 2006 ident: ref37/cit37 publication-title: Chem.—Eur. J. doi: 10.1002/chem.200600032 – volume: 50 start-page: 9861 year: 2011 ident: ref10/cit10 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201104102 – volume: 22 start-page: 5362 year: 2012 ident: ref19/cit19 publication-title: J. Mater. Chem. doi: 10.1039/c2jm15674a – volume: 51 start-page: 11700 year: 2012 ident: ref31/cit31 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201201656 – volume: 13 start-page: 909 year: 2013 ident: ref32/cit32 publication-title: Nano Lett. doi: 10.1021/nl303682j – volume: 19 start-page: 604 year: 2009 ident: ref16/cit16 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.200800940 – volume: 2 start-page: 123 year: 1982 ident: ref26/cit26 publication-title: Surf. Sci. Rep. doi: 10.1016/0167-5729(82)90001-2 – volume: 92 start-page: 093303 year: 2008 ident: ref29/cit29 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2885724 – volume: 21 start-page: 095502 year: 2010 ident: ref36/cit36 publication-title: Nanotechnology doi: 10.1088/0957-4484/21/9/095502 – volume: 5 start-page: 1831 year: 2013 ident: ref11/cit11 publication-title: Nanoscale doi: 10.1039/c3nr33985h |
SSID | ssj0057876 |
Score | 2.5574603 |
Snippet | Silicon nanostructure-based solar cells have lately intrigued intensive interest because of their promising potential in next-generation solar energy... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4015 |
SubjectTerms | Arrays Carbon Heterojunctions Nanostructure Nanowires Photodetectors Photovoltaic cells Qunatum dots Silicon Solar cells |
Title | Core–Shell Heterojunction of Silicon Nanowire Arrays and Carbon Quantum Dots for Photovoltaic Devices and Self-Driven Photodetectors |
URI | http://dx.doi.org/10.1021/nn501001j https://www.ncbi.nlm.nih.gov/pubmed/24665986 https://www.proquest.com/docview/1518619964 https://www.proquest.com/docview/1762051084 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1JT9wwFLZgeoFDF7ZSWmQoBy6hicdOxkc0Axr1gEBTJG6R40UMHeIqy6E99dQ_0H_YX9L3ksloKpae8xwnfttnvefPhBwlAEEiY2RgIHcFXEc8UEKGgQldH9m-uXMN2-dFPL7mn2_EzQr5-EQFn0Wf8lyESBR0t0pesBicF_HPcNKFW7S4uC0dw9YY8ENHH7Q8FFOPLv9NPU_gySavnL8io-50TttO8vWkrrIT_eMhWeNzn_yavJzjSnraGsIbsmLzDbK-xDa4SX4NfWH__Pw9wd5POsY-GH8HaQ1VQ72jk-kMzCKnEHA9MhjDywr1vaQqN3SoigweXdWgiPqejnxVUoC79PLWVx4iXKWmmo5sE3aaARM7c8GowFjaChlbNQWCcotcn599GY6D-TUMgeIRr4KEG2mkzJhxRuDpQhka6RyXTiSA1gahhiCVGSd4IhJmZagUc0kmjFa2Dwitv016uc_tW0Kt0AaMQguLNWXLZWZsEhkL2xTbF6HaJfugp3TuRmXaVMhZlC4WdJccdypM9ZzEHO_SmD0mergQ_dYydzwmdNDZQQp-hcUSlVtfw9QiGsTYos2fkYFMgkFtADI7rREtpmI8jpH7_t3_fmmPrIG7NN1AjL0nvaqo7QcAOlW23xj6X6Gp-Ko |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LU9RAEJ4SPAgHFVHAB4wUBy-BJDuT7BypXalVkNJaqOKWmsyjBJYMlcdBT578A_5Df4ndk-wKFCjn9DyS-ab7m-rON4RspUBBIq1FoCF2BUxFLJBchIEObQ_Vvpm1Xu3zMBkds48n_KSTycF_YWASFfRU-ST-X3WBaKcoeIh6QWdz5CGQkBjRvDsYT70uAi9pM8hwQgYaMVURutoUI5CqrkegO2ilDy97T9p7ivzEfFXJ-XZT59vq-w3NxvvN_Cl53LFMutvCYok8MMUzsnhFe3CZ_By40vz-8WuMlaB0hFUx7gyCHC4UdZaOTycAkoKC-3WoZwydlfJbRWWh6UCWOTz60sCyNBd06OqKAvmln7-62oG_q-WpokPjnZBvMDYTGwxL9KytkTa1TxdUz8nx3vujwSjoLmUIJItYHaRMCy1EHmurOf5rKEItrGXC8hS4Wz9U4LJybTlLeRobEUoZ2zTnWknTA77We0HmC1eYVUINVxogorjBDLNhItcmjbSBQ4vp8VCukXX4nlm3qarM58vjKJt90DXybrqSmeokzfFmjcltppsz08tWx-M2o7dTOGSwyzB1IgvjGhiaR_0EC7bZP2wgrqCL64PNSoul2VAxSxJUwn_5v1faII9GR58OsoMPh_uvyAJsJF8nFMevyXxdNuYNUKA6X_fY_wPDuAEa |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Jb9QwFLagSIge2JeyFIM4cElJMnYyPlYzjIZFpWio1Fvk-Nmi7RBXWQ5w4sQf4B_yS3jPyYwKKss5z0vs7y3We_7M2LMcQ5AEQEWAvisSJhGRliqOIHYjYvsWzgW2z71sfiBeH8rD4aBId2FwEg321IQkPmn1KbiBYSB5UVUyJs6g44vsEqXrCNG7k8XK8hL4sj6LjKdkDCVWTEJnm5IXMs2vXugPoWVwMbNr7N16cqGy5GSna8sd8-U33sb_n_11dnWINvluD48b7IKtbrLNMxyEt9i3ia_tj6_fF1QRyudUHeOP0dnRhnHv-OJoiWCpOJphT7zG2FmtPzdcV8Anui7x0_sOt6f7xKe-bTgGwXz_o2892r1WHxk-tcEYhQYLu3TRtCYL2wuBbUPaoLnNDmYvP0zm0fA4Q6RFItooF6BAqTIFB5LuHKoYlHNCOZljDDeODZquEpwUucxTq2KtU5eXEoy2I4zbRnfYRuUre49xKw0gVIy0lGm2QpVg8wQsHl7sSMZ6i23jmhaDcjVFyJunSbFe0C32fLWbhRmozemFjeV5ok_Xoqc9n8d5Qk9WkChQ2yiFoivrOxxaJuOMCrfFX2TQv5CpG6PM3R5P66FSkWXEiH__X7_0mF3en86Kt6_23jxgV1CfQrlQmj5kG23d2UcYCbXldoD_TxJeA50 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Core-shell+heterojunction+of+silicon+nanowire+arrays+and+carbon+quantum+dots+for+photovoltaic+devices+and+self-driven+photodetectors&rft.jtitle=ACS+nano&rft.au=Xie%2C+Chao&rft.au=Nie%2C+Biao&rft.au=Zeng%2C+Longhui&rft.au=Liang%2C+Feng-Xia&rft.date=2014-04-22&rft.issn=1936-086X&rft.eissn=1936-086X&rft.volume=8&rft.issue=4&rft.spage=4015&rft_id=info:doi/10.1021%2Fnn501001j&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon |